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Thesis Statement  
 

 

 

The goal of current work is to deliver an integrated bioinformatics pipeline for label-
free proteomics that incorporates various available open source quantification 
programs into a common processing and analytical framework. The intention is to use 
such common framework to carry out an appropriate performance evaluation of the 
available software packages, to identify their critical parameters and to validate the 
workflow using the controlled data set. The validated pipeline will be an open resource 
for label-free quantification accessible as web deployed application. 

The analytical software pipeline should be developed in a flexible way allowing for its 
extension to include more quantification programs and statistical tools. It should 
deliver means for software parameter tuning and allow uniting and comparing the 
results from different programs and different experiences. The data shall be 
processed in a fully automated way using any of the incorporated open source 
software packages and the combination of desired statistical methods. The framework 
shall include tools for data quality assessment and allow for user intervention if 
necessary.  
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Abstract 
 

 

 

There is a growing interest towards label-free mass spectrometry based quantification 
in the field of proteomics. Following the advances in mass spectrometer technology, 
new techniques for data analysis evolve and new tools for quantification are being 
developed. The abundance of the available open source algorithmic approaches, the 
differences in the pre- and post- processing of data, make it difficult to select an 
appropriate tool for label-free quantitative analysis. Moreover it is a hard task to 
parameterise the selected tool to achieve its optimal performance within a given 
analytical platform.  

Responding to the need for adequate performance evaluation of reported software, 
the proposed analytical platform provides a common processing and statistical 
framework for label-free proteomic analyses with different open-source programs for 
TIC-based label-free quantification. The flexible structure of the pipeline is extensible 
to include more common processing and analytical options and to integrate additional 
software packages. The latter one requires the development of a dedicated converter 
of the extracted list of matched features to a common input format for the analytical 
workflow.  

Currently pipeline includes two quantification programs: SpecArray and SuperHirn. 
Critical performance parameters are determined for each integrated software package 
based on the receiver operating characteristic (ROC) analysis and result trueness and 
precision. The analyses are carried on the controlled data set that contains standard 
proteins at known concentrations. The optimal parameter settings are suggested for 
LTQ-Orbitrap based analytical platform. The pipeline is then validated with biological 
data using the determined optimal settings. 
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Abbreviations 
 

 

 

AUC – Area under the curve 

CV – Coefficient of Variation 

FN – False Negative 

FP – False Positive 

LC – Liquid Chromatography 

LF – Label Free 

LPE – Local Pooled Error 

MS – Mass Spectrometry 

PPM - Parts Per Million 

SA – SpecArray 

SAM – Significance Analysis for Microarrays 

SD – Standard Deviation 

SH - SuperHirn 

TIC – Total Ion Current 

TN – True Negative 

TP – True Positive 
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I. Introduction 
Mass spectrometry (MS) based proteomics in combination with bioinformatics tools 
plays an important role in the analysis of biological data sets. A core MS-based 
method is to use an integrated liquid chromatography mass spectrometry (LC-MS) 
system, especially suitable for the analysis of complex protein mixtures. Although MS 
analysis is inherently qualitative, the state of art LC-MS technology is capable of 
extracting quantitative information on changes in protein abundance (Ackermann et 
al). 

The numerous reported strategies to derive quantitative information from MS 
analyses can be divided into labelled and label-free approaches. The stable isotope 
labelling strategies were first to emerge in the field of proteomics (Turck et al). 
Although these labelling strategies are successfully used for relative quantification of 
proteomic data, their use is limited to the direct comparison of up to eight 
experiments, due to the restricted availability of labelling reagents. Additional 
limitations of labelled techniques relate to their relatively high cost and time required 
for sample labelling (Kühner et al, Vandenbogaert et al).  

The label-free approaches represent an alternative strategy of lower complexity and 
cost without the limitation in the number of compared samples. Free from the 
requirement of sample mixing, the analyses can include data sets obtained at 
different time or place (Ackermann et al, Vandenbogaert et al). Furthermore, there is 
evidence that label-free techniques yield wider dynamic range and higher proteome 
coverage (Bantscheff et al). The investigation of quantitative properties can be done 
at two levels: using the total ion current (TIC) at MS1 detection level or using MS/MS 
selection frequency. This work focuses on MS1 level quantification that is in general 
more sensitive and accurate than MS/MS spectral counting. In addition, TIC-based 
quantification tackles the problem of insufficient sampling of low-abundance 
components associated with tandem mass spectrometry in data dependent acquisition 
mode. Virtually any feature detected by mass spectrometer can be quantified through 
relevant ion current integration (America and Cordewener, Kühner et al).  

On one hand, recent advances in MS technology have induced substantial quality 
improvement of the label-free techniques. On the other hand, the complexity of high-
dimensional LC-MS data raises a challenge of developing a set of advanced 
bioinformatics solutions to carry out computational and statistical tasks (Wong, J. W. 
H. et al). Open-source software packages emerging in label-free proteomics field 
target further improvement of the reliability and accuracy of final results. However, 
although a wide number of algorithms were reported, the adequate assessment of 
their performance is complicated by differences in input/output formats, functionality, 
user interfaces and parameter tuning options.  

The available tools were optimised for specific types of mass analysers and differ in 
the level of output complexity starting from a simple list of features with quantitative 
and statistical values up to sophisticated expression profile analyses. A particular 
attention should be given to software parametrisation required to achieve maximum 
efficiency on a given analytical platform. Even within the same analytical platform, 
changes in parameter settings may lead to considerable differences in final result 
quality. Software parametrisation requires a thorough understanding of program 
operation and often demands extended informatics competencies. Thus restricted 
availability of informatics resources within a laboratory may limit the use of software 
tools (Deutsch et al). 

A number of previous works evaluate the performance of different software solutions 
both commercial and open source (America and Cordewener, Mueller 2008 et al, 
Wong J.W.H. et al). However the performance of available open source programs was 
never fully integrated within a common analytical framework for adequate comparison 
using the same test data set. Lange (2008) and colleagues assessed performance of 
alignment algorithms of several open source programs. Suggested evaluation 
procedure is based on the alignment of two benchmark data sets containing already 
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Figure 1: Target processing and statistical analysis pipeline 

extracted peptide signals. Recently developed open source framework Corra 
integrates existing tools for feature extraction and alignment into an APML-based 
environment (Brusniak et al). Although Corra allows for comprehensive differential 
expression analysis within a common frame, it does not provide any tools for 
performance evaluation.  

Responding to the need for adequate performance evaluation of reported software, 
the goal of current work is to develop a bioinformatics pipeline readily extensible for 
integration of a software package of interest into a common processing and statistical 
framework. The target pipeline should process the MS data input with different 
quantitative programs in order to achieve an equivalent quantitative output converted 
to a common format used as input for common analysis (Figure 1). The input files 
should be automatically processed into a set of tables, figures and data objects 
containing such information as differential expression profiles, clustering, type I and 
II error analysis, etc. Combining several software suits within the same framework 
will facilitate the task of inter-software evaluation by making the performance more 
appraisable. Supplemented with the appropriate analytical tools the framework will be 
used to identify critical performance parameters for each software program. In 
addition, the reliability of quantitative measures can be improved by unifying and 
comparing the results of different tools (Mueller 2008 et al, Lange 2008 et al). 
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II. Theoretical Framework  

A. Mass spectrometers  
The performance of the mass spectrometer is central to the quality of results obtained 
with label-free quantification. A high-resolution mass spectrometer is required to 
ensure optimum feature extraction from MS1 level, whereas, a sensitive mass 
spectrometer with high MS/MS sampling rate suits best for MS2 detection. 

1. High resolution mass spectrometers 

The resolution of the mass spectrometer is a critical attribute of label-free 
quantitative approaches based on TIC. Higher resolution improves the identification of 
charge state and isotopic pattern assignment to overlapping peaks. Furthermore, the 
reliability of resulting expression profiles is improved by minimising the influence of 
interfering signals of similar masses that can be mapped at narrower mass-to-charge 
ratio intervals (America and Cordewener, Bantscheff et al, Marshall and Hendrickson).  

The advances in mass analyser technology and development of new MS-based 
experimental approaches permitted the use of high-resolution mass spectrometers in 
the field of proteomics (Aebersold and Mann, Marshall and Hendrickson). Two types of 
analysers are compatible with liquid chromatography and atmospheric ionisation 
sources used for proteomic analyses: Fourier transform (FT) instruments and 
reflectron time-of-flight (TOF) (Marshall and Hendrickson). 

a. Fourier transform (FT) instruments 

FT mass analysers, ion cyclotron resonance (ICR) and Orbitrap are trapping 
instruments that detect ions as time domain signals converted to frequency domain 
by Fourier transformation. In ICR mass spectrometer ions orbit in the magnetic field 
at a frequency characteristic of their mass-to-charge ratio value. Ion image charge is 
detected by exciting ions to a larger radius with a pulse of radio frequency energy. 
Orbitrap is a trapping device that can be operated as a mass analyser, where ions 
orbit along the axis of electrostatic field created between an outer barrel-like 
electrode and a coaxial inner spindle-like electrode at a frequency inversely 
proportional to the square root of mass-to-charge ratio. Orbitrap detects an image 
current of ions excited to a larger orbit (Murray et al).  

The benefits of FT-MS are high sensitivity, mass accuracy, resolution and dynamic 
range. The disadvantage is low peptide-fragmentation efficiency. The Orbitrap has 
lower mass resolution and mass accuracy in comparison to ICR, but has higher 
sensitivity and mass-to-charge ratio range when ions are injected from an external 
source. FT mass analysers are optimal for ions of mass-to-charge ratio smaller than 
5000 (Marshall and Hendrickson). 

b. TOF instruments 

TOF instruments are based on the measurement of transit time of ions accelerated by 
a pulsed direct-current electric field and flying in high vacuum in the absence of 
external electrical or magnetic fields (Marshall and Hendrickson). TOF instruments 
have high mass accuracy, resolution, sensitivity and speed. These instruments have 
in principle no upper mass-to-charge ratio limit and are advantageous for applications 
that require fast acquisition of more than one spectrum per second (Marshall and 
Hendrickson). 

2. Hybrid mass spectrometer: LTQ-Orbitrap 

A hybrid LTQ-Orbitrap mass spectrometer combines a linear ion trap with radial 
ejection and an Orbitrap mass analyzer (Makarov et al). This instrument supplements 
the accurate mass capability of Orbitrap with sensitivity and high MS/MS sampling 
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rate of a linear ion trap. Extensive MS/MS sampling improves the performance of 
spectral counting approaches and TIC-based approaches that rely on parallel or 
alternate full survey MS detection and MS2 identification (America and Cordewener, 
Old et al, Fu et al, Xia et al).  

B. Label-free quantification approaches  
The two main strategies for label-free quantification are spectral counting and TIC-
based approach. The first one estimates relative protein abundance based on the 
number of relevant peptide fragment MS/MS spectra. The second relies on the 
comparison of chromatographic peak intensities across multiple consecutive LC-MS 
runs. Spectral counting methods tend to be less accurate and have smaller dynamic 
range than TIC-based approaches (America and Cordewener, Wang M. et al, Mueller 
2008 et al, Bantscheff et al). The performance of spectral counting can be improved 
using sensitive mass analyser with high MS/MS sampling rate, such as linear ion trap 
(Old et al). On the other side, a substantial improvement in the accuracy of 
quantification by ion intensities can be achieved using high resolution and high 
accuracy mass analysers, such as Fourier transform (FT) analysers.  

1. Spectral counting 

The spectral counting approach emerged from the empirical observation of higher 
frequency of selection of a particular protein for MS/MS analysis if more of that 
protein was present in a sample. The quantitative dimension is established through 
the comparison of normalised count of peptide identifications for a given protein. This 
approach relies on MS/MS information for both identification and quantification and 
therefore requires high MS/MS sampling rate for optimal performance (America and 
Cordewener, Bantscheff et al). The main advantage of spectral counting is the 
conceptual simplicity of simultaneous identification and quantification through 
extensive MS/MS sampling. On the other hand the reliability of final results strongly 
depends on peptide identification (Wang M. et al). In addition, the quality of inferred 
protein abundance depends on software and parameters used for MS/MS acquisition 
as well as on post-processing of spectral counts (Choi et al, Fu et al, Zhang B et al, 
Xia et al). Within the scope of current wok the spectral counting approach is not 
considered in further detail.  

2. TIC-based quantification 

TIC-based approach relies on the observation of proportionality between peptide 
concentration and peak volume detected in LC-MS analysis (America and 
Cordewener). The differences in expression level are measured by comparing the 
mass spectrometric signal intensity of corresponding precursor ions across LC-MS 
runs, given that the measurements are performed under identical conditions. The ion 
chromatograms for every potential peptide are extracted from LC-MS scan and then 
the spectrometric peak volume is integrated over the chromatographic retention time 
scale (Bantscheff et al, Kühner et al). Since peptide quantification is uncoupled from 
identification, an MS/MS analysis is required to confirm peptide identities.  

To meet the assumption of identical conditions for different LC-MS runs, the method 
requires highly reproducible HPLC separation procedure. The stability of elution 
ensures high peak capacity in retention time dimension. The capacity in mass-to-
charge ratio dimension requires a sufficient resolution of the full scan MS spectra 
(America and Cordewener). Survey scan sampling rate optimisation can be achieved 
by separating MS and MS/MS analyses. High frequency full scan MS analysis is used 
to estimate the abundance values and generate the inclusion list with differentiated 
features for the subsequent MS/MS identification analysis. Although this approach 
benefits from selective MS/MS identification of peptides of interest, the data analysis 
may become more complicated.  
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   Figure 2: Feature extraction and matching 

An alternative approach is to collect MS1 intensities and identification information in a 
single LC-MS run. This can be done either by simultaneous performance of acquisition 
and fragmentation scans or by switching between MS and MS/MS modes (America 
and Cordewener, Bantscheff et al). The main disadvantage of simultaneous 
acquisition is relative uncertainty regarding the true precursor ion (Niggeweg et al). 
The alternate scanning approach reduces the sampling rate of intact peptide signals. 
However if the right balance between scanning frequency of MS and MS/MS modes is 
found, this approach benefits from the limited amount of MS/MS information that can 
be used as a landmark in the alignment procedure (America and Cordewener, Wong, 
J. W. H. et al).  

C. TIC-based quantification algorithms 

1. Data processing 

Main steps in quantitative TIC-based LC-MS data processing are the following 
(America and Cordewener, Lange 2008 et al, Tautenhahn et al): 

• Preprocessing 

• Feature extraction 
(Figure 2, steps 1 - 3) 

• Matching and alignment 
(Figure 2, step 4) 

• Normalisation 

• Statistical analysis  

Each LC-MS run generates a 
complex high-dimensional data 
set. The goal is to discern from 
a multitude of detected signals, 
the peaks that correspond to 
peptides and to extract the 
abundance information. Peptide 
peaks are detected through 
their characteristic isotope 
pattern (Figure 2, step 1). The 
measure of abundance for a 
particular peptide stems from 
the intensity levels over the 
elution time for its mono-
isotopic mass ion, or for several 
isotopes (Figure 2, step 2).  

The recognised peptide peaks 
are extracted to features 
mapped in the dimensions of 
retention time and mass-to-
charge ratio (Figure 2, step 3). 
Features are defined at least by 
a particular charge state, retention time, monoisotopic mass-to-charge ratio and 
integrated intensity volume. Optional characteristics may include isotope distribution, 
molecular weight and other information. Thus the continuous data set from each LC-
MS run is converted to a list of discrete features with specific time and mass 
coordinates. The features extracted in each run are matched according to their time 
and mass coordinates and charge state to corresponding features in the other runs 
(Figure 2, step 4). Feature matching requires the alignment in retention time and to 
smaller extent in mass to charge dimension, because of technical and experimental 
variations inherent to LC-MS data. The result of the alignment and matching 
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procedure is a consensus map that contains features whose characteristics include the 
intensity volume information for each LC-MS run.  

A common output of available quantification programs is a data structure, often a 
table or an array, with the aligned features. Such feature lists may include MS/MS 
identification information and related scores or probabilities. The reported abundance 
measures as well as the retention time and mass may be subject to normalisation 
discussed in section II.C.1.d. In addition to the above mentioned output, the 
programs provide means for comprehensive statistical analysis of differential 
expression. However in the scope of current work such options are not considered. 

a. Preprocessing 

Goal: reduce noise and enhance signal 

The spectra obtained with LC-MS experiments contain a mixture of peptide signals 
and different types of noise, such as electronic and chemical noise. Noise suppression 
and baseline correction can be accomplished prior to quantification procedure either 
by subtracting an additive baseline model or using noise filtering to smooth and 
enhance the MS signal. Digital noise filters include wavelet transform, Savitzky-Golay, 
loess, moving average and other filters (America et al, Listgarten and Emili). 

On the contrary, noise filtering may complicate isotope pattern assignment by filtering 
out the least intense isotopes. The remaining isotopes may not be sufficient for 
pattern fitting, especially if the minimum number of isotopes is specified. 
Furthermore, denoising removes the chemical component of the noise that may 
indicate the consistency of measurements and ionisation performance and therefore 
be used to correct errors in spectra.  

Another commonly used method for raw profile data reduction is peak centroiding. 
Peaks are approximated to their centroids according to the specified range, often set 
at mass-to-charge ratio values of half-peak height.  

b. Feature extraction 

Goal: transform raw or preprocessed LC-MS data into a list of features 

Feature extraction is a crucial step in data processing, since all subsequent analysis is 
based on the information extracted in this step. The algorithm should identify 
maximum number of true features and integrate relevant abundance values, while 
keeping low false positive detection. Features are characterised by the relevant 
monoisotopic mass, retention time, charge state, abundance and other parameters. 
The main challenges stem from the presence of overlapping isotope patterns, multiple 
charge states, low intensity features of interest, chemical and instrument noise, 
varying ionisation efficiencies, deviation from linearity in detector response and 
limited reproducibility (America and Cordewener, Tautenhahn et al, Noy and Fasulo, 
Renard et al). A particular concern should be given to tailing peaks that may be 
erroneously detected as multiple consecutive peaks (America and Cordewener). 

If one LC-MS run data is represented as a two-dimensional image, where the 
horizontal axis is a retention time, the vertical axis is a mass-to-charge ratio and the 
grey colour level indicates the intensity value (Figure 2, step 1), then feature 
extraction can be described as a task of determining boundaries and intensities of 
two-dimensional peptide signals (Tautenhahn et al). Peptide signals are identified 
through their characteristic isotope distribution by fitting the observed spectral 
pattern to theoretical isotope distribution models. Additional processing steps are 
required to handle the overlapping features (Noy and Fasulo, Renard et al). The 
accuracy and correctness of peptide signal recognition depends on similarity measure 
used in the comparison of theoretical and observed shapes, on goodness of calculated 
theoretical model shape and fitting optimisation algorithm.  

Peptide peak detection provides the information on monoisotopic mass-to-charge 
value and peptide charge state. The abundance values of the identified peptide 
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   Figure 3: Intensity integration 

signals are estimated based on 
the intensity of relevant 
monoisotopic ion or sum of 
intensities of all or several 
isotopes (Figure 3). The peak 
volume of the relevant ion 
current gives a value of peptide 
abundance in a given sample 
(America and Cordewener, 
Tautenhahn et al).  

Quantification approaches 
relying on monoisotopic mass 
intensity integration may be 

less sensitive especially for larger peptides for which the monoisotopic ion current 
constitutes a relatively small part of the total signal intensity. On the other side, the 
summed volume of all isotopes allows for higher sensitivity and accuracy at the cost 
of increased computational complexity, especially in the case of overlapping isotope 
patterns (Bantscheff et al, Du et al). 

Additional challenge for feature extraction is its computational complexity. A number 
of approaches emerged to reduce the computation time required for feature 
extraction starting from the use of batch processing (America and Cordewener) up to 
data transforms. One of the widely used approaches is binning that transforms LC-MS 
data into a matrix with the dimensions of mass-to-charge, retention time and 
intensity. Such transformation divides the mass-to-charge axis on bins of specified 
width depending on the resolution of mass spectrometer. Finding optimal bin size is 
crucial for the reliability of this processing method. Too small or too big size may 
induce data loss because of deteriorated chromatographic shape and increased 
chromatographic noise level respectively. Alternative approaches include Kalman 
tracking based, Wavelet based and density based techniques, as well as the 
combinatory approaches (Aberg et al, America and Cordewener, Listgarten and Emili, 
Tautenhahn et al).  

c. Matching and alignment 

Goal: find corresponding features across maps 

The comparison of multiple LC-MS runs relies on matching of corresponding features 
of same charge state in retention time and mass-to-charge ratio dimensions (Figure 2, 
step 4). Since time and mass information are subject to technical variations, the 
matching requires feature alignment across LC-MS runs in both dimensions. The main 
challenges to alignment are posed by the inequality of drift magnitude, the 
overlapping features and the absence of corresponding features. The observed drifts 
and distortions are particularly significant in retention time dimension attributable to 
limited reproducibility and stability of chromatographic system, whereas the mass-to-
charge ratio variation caused by instrument noise is of smaller scale (America and 
Cordewener, Lange 2008 et al, Wang P. et al).  

The global alignment of retention time can be done on raw data level by selecting a 
template file and warping the retention time coordinates of other files to achieve 
maximum similarity in retention time dimension. However relying only on time 
coordinates is not sufficient to correct for differing retention time shifts and changes 
in elution order across runs. Instead of using the raw data, a number of algorithms 
align the extracted features allowing for local correction of each distinct feature drifts. 
The alignment of extracted features provides greater flexibility, but is vulnerable to 
the inaccuracy of feature extraction and fails to account for raw spectra information, 
such as isotope distribution. A particular concern relates to peptides that exhibit peak 
tailing and can be therefore detected as multiple features (America and Cordewener, 
Wang P. et al).  
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Multiple data sets of extracted features can be aligned simultaneously (multiple 
alignment) or sequentially. The latter approach relies on the choice of a template and 
may lead to unpredictable errors (Wang P. et al).  The reported algorithms include 
such approaches as data binning, multi-scale wavelet decomposition, Hidden Markov 
Model, clustering and other (America and Cordewener). Pioneer software, SpecArray, 
solves the alignment problems by allowing for variation in mass-to-charge ratio and 
retention time of individual features (Li et al). The maximum mass-to-charge 
variation is set by a threshold, whereas retention time variation is selected according 
to the smallest possible distance to the calibration curve (section II.C.2.).  

An alternative approach is to combine the alignment on raw data level and extracted 
features level. For example, SuperHirn program relies on a multi-step alignment 
procedure, where based on raw data clustering the most similar extracted feature 
data are aligned to each other first. Another approach combines raw spectra and 
extracted feature information for simultaneous multiple alignment (Wang P. et al).  In 
addition, the available MS/MS identifications can be used as a landmark in the 
alignment process (America and Cordewener). 

d. Normalisation 

Goal: correct global errors and technical bias 

In order to find the true differences in the abundance it is crucial to account for 
known sources of systematic biases (Oberg and Vitek). The goal of normalisation 
procedures is to correct for systematic biases in retention time, mass-to-charge ratio 
or integrated peptide intensity. The time and mass normalisation corrects global 
errors and improves feature matching and comparison. Depending on the 
implemented algorithm retention time and mass normalisation may occur during the 
alignment procedure. The most essential for results quality is the normalisation of 
intensity. Intensity normalisation corrects for technical bias introduced during the 
data measurement, such as carry-over and drifts in ionisation and detector 
efficiencies (America and Cordewener). The intensity can be normalised prior to 
feature extraction to improve the comparability across LC-MS runs. This step is 
particularly important if different experiences are compared. Otherwise intensity 
normalisation can be applied to estimated feature abundance. 

The normalisation can occur on local and global level. Thus given the assumption that 
overall abundance of all features is equal across samples and their replicate 
measures, a normalisation can be done by multiplicative correction factor. Other 
global normalisation approaches rely on distribution parameters of all or part of 
detected features in the data set. Local normalisation approaches often rely on 
regression algorithms, such as loess. America and Cordewener discuss the importance 
of and the advances in different level normalisation, Listgarten and Emili provide for a 
technical overview of techniques.  

e. Statistical analysis, profiling 

Goal: infer biologically meaningful information 

The statistical analysis of proteomic data is discussed in section II.D. 

2. Open source software 

Numerous available software packages are available in the filed of label-free 
quantification and more packages are being developed. Different open source and 
commercial solutions emerge following the advances of MS technology and cover a 
wide range of analytical platforms. Mueller (2008) and America and Cordewener 
review the available software for label-free proteomics. The available software 
packages implement different algorithms and vary in processing flows for data 
treatment steps discussed in section II.C.1. Most of open source solutions operate in 
Linux environment and use mzXML input format for MS data. 
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a. Two software generations: SpecArray and SuperHirn 

SpecArray algorithm 

SpecArray is a pioneer software program in the 
field of quantitative label-free proteomics (Li et 
al). Accordingly it was developed for the use on 
Q-TOF-based mass spectrometry platforms. 
SpecArray software suit includes five distinct tools 
listed in Table 1. Pep3D tool is recommended for 
visual data quality assessment and is optional for 
quantitative experiment. The remaining tools 
perform quantitative tasks: features extracted 
from preprocessed spectra are aligned and 
combined to peptide versus sample expression array.  

SuperHirn algorithm 

SuperHirn is a latest generation tool, developed for the analysis of data generated 
with FT-MS (Mueller 2007 et al). SuperHirn relies on multi-dimensional alignment to 
generate a global feature map, called MasterMap. The MS/MS identifications are 
assigned to relevant extracted features. In addition, SuperHirn includes a number of 
post-processing options for MasterMap, such as similarity analysis of LC-MS runs, 
global feature intensity normalization across LC-MS runs, K-means cluster analysis, 
targeted peptide and protein profiling and MS1 feature annotation.  

Overview of main steps 

Being developed for the analysis of lower resolution Q-TOF data in comparison to FT-
MS, SpecArray (Li et al)  includes multi-step preprocessing options that include 
smoothing, signal enhancement, centroiding, local background subtraction and signal 
to noise (S/N) ratio cutoff (Table 2-A). In contrast, SupeHirn (Mueller 2007 et al) 
centroids raw peak data during feature extraction step and defines the minimum 
intensity cut-off for signals to 
be considered. 

The tools present two different 
approaches to feature 
extraction (Table 2-B): 
SpecArray identifies features in 
one dimension only, whereas 
SuperHirn applies a two-
dimensional filter in both time 
and mass. In addition, 
programs implement different 
intensity integration approaches 
discussed in section II.C.1.b.: 
SuperHirn relies on the 
extracted ion current for a 
monoisotopic mass, SpecArray 
uses summed volumes of the 
first three isotope ion currents 
(Figure 3). The use of several 
isotopes for intensity 
integration and the limited 
capabilities of one-dimensional 
approach complicate the task of 
overlapping isotope pattern 
matching. To handle this 
SpecArray defines an interval 
within which only the most 
intense feature is kept. On the 

Tools Output 

Pep3D LC-MS run image 
mzXML2dat preprocessed spectra 
PepList extracted features 
PepMatch aligned features 
PepArray expression array  

Table 1: SpecArray Tools 

 SpecArray SuperHirn 

A. Preprocessing 

Smoothing wavelet no 

Centroiding yes yes 

Intensity threshold on local maxima minimum value 

S/N ratio yes no 

B. Feature Extraction 

Dimensions m/z m/z + Rt  

Intensity integration first 3 isotopes monoisotopic 

Overlapping patterns discard least intense solve 

MS2 id annotation no yes 

C. Alignment 

Rt normalisation calibration curve lowess 

Mode pairwise multiple 

Level features raw + features 

Method ∆m/z + Rt distance clustering 

D. Intensity normalisation 

Level subset local 

Method ASAPratio iterative average 

m/z = mass-to-charge ratio; Rt = retention time 

Table 2: SpecArray and SuperHirn processing 
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contrary, SuperHirn applies a specific procedure to resolve the overlapping patterns 
and integrate the intensity based on the fitted model. 

A major difference in the use of SuperHirn and SpecArray is the integration of MS2 
identifications. SpecArray relies exclusively on MS1 level information and any peptide 
identifications should be carried out in separate MS/MS analyses using the inclusion 
lists. SuperHirn was developed for LC-MS/MS analyses; it annotates the extracted 
features with available MS/MS identification (Table 2-B) and transfers these 
identifications to the matched features. The issues regarding the resolution of MS1 
spectra obtained with these approaches are discussed in section II.B.2. 

In terms of feature matching and alignment (Table 2-C), SpecArray implements 
computationally expensive pairwise alignment in contrast to SuperHirn that uses 
multiple alignment procedure. Pairwise alignment limits the number of feature maps 
that can be processed with SpecArray (Lange). SpecArray aligns the extracted 
features by defining a maximum mass-to-charge difference and calculating the 
distances to retention time calibration curve (RTCC) between each two LC-MS runs. 
The RTCC is calculated iteratively, removing the low-scoring peptides until only 
unique pairs remain. All pairwise alignments are then combined to the final consensus 
map. SuperHirn program relies on a multi-step alignment procedure. First the 
alignment topology is constructed based on the similarity between raw profile data. 
Then the multiple alignment of features takes place according to the order defined by 
the alignment topology and the aligned features are combined into a consensus map. 
The retention time is normalised during LC-MS alignment using Lowess algorithm.  

For intensity normalisation, SpecArray implements ASAPratio tool on subset level, 
whereas SuperHirn performs local normalisation using an iterative average (Table 2-
D). 

D. Differential Expression Analysis 
The major goal of quantitative studies is to determine biologically significant 
differences in detected feature expression levels. The variability in proteomic data 
does not only reflect true biological changes in abundance, but also originates from 
different sources of random variation, such as random effects from biological samples 
and replicates, and technical measurement variation. The features likely to be 
differentially expressed must have sufficient level of evidence for biologically relevant 
change. The selection of such features is done through the following steps (Smyth 
and Yang): 

• Estimating the level of evidence for differential expression for each feature 

• Ranking all features by evidence for differential expression 

• Choosing threshold to assign significance to changes 

1. Choice of statistical method 

This work focuses on the application of statistical analysis to estimate the evidence for 
differential expression and does not consider other approaches such as machine 
learning.  Existing statistical methods can serve as a means to evaluate whether a 
given variation is likely to be a random fluctuation or a statistically significant change. 
The choice of statistical method to rank features depends on the number of replicates 
available, on sample size and on the assumptions that can be made about data.  

a. Replicates and sample size 

The change in the abundance level for a given feature can be estimated from 
differences between its distributions in different samples. For example by considering 
central tendency parameter of replicated values, such as mean or median. Statistical 
significance of a given change can be inferred from pattern of variation in relevant 
replicate values. The performance of statistical tests based on distributional 
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differences, therefore, depends on the number of replicates. The higher the number 
of replicates, the higher the confidence of statistical significance assignment and the 
reliability of inferred conclusions (Oberg and Vitek).  

Despite the advantages of using multiple sample replicates, this is not always possible 
due to the limited amount of sample material or limited MS analysis time (Choi et al, 
Li and Roxas). In this case nonparametric tests can be applied to estimate the 
evidence for differential expression. The accuracy of conclusions inferred with 
nonparametric tests strongly depends on the sample size: the larger, the better. 
Unfortunately in proteomic experiences limited sample size often leads to insufficient 
power of nonparametric tests. Therefore, although the number of replicates is not a 
prerequisite, the accuracy of results can be improved by pooling the replicated 
samples to form a bigger data set (Batscheff et al). A possible alternative to address 
the limited replication is to use combined approaches that include both parametric 
and nonparametric tests for evidence estimates (Li and Roxas). 

b. Distributional assumptions and data transformations 

Parametric statistical tests, such as the t-test, have higher statistical power than the 
nonparametric tests, such as permutation tests, if their underlying distributional 
assumptions are at least approximately met. The most common assumptions are 
distribution normality and variance stability. The nonparametric tests are free from 
the assumptions on data distribution, but rely on the assumption of random sampling. 
The data sets are considered as random samples from underlying populations (Oberg 
and Vitek). 

As distributional assumptions are generally not met by proteomic data, a particular 
concern should be given to data transformations. In many cases simple logarithmic 
transformation is enough to approximate the normal distribution. Whereas the 
distribution of peptide intensity values is strongly right skewed, the distribution of 
logarithms of intensities will tend to be centralised. The variance is stabilised by 
converting multiplicative errors into additive effects (Anderle et al, Listgarten and 
Emili, Oberg and Vitek). For data following a Poisson distribution a square root 
transformation can be used to stabilise the variance. The optimal variance stabilising 
transformation of original or log-transformed data can be selected automatically by 
estimating Box-Cox transformation parameter for a given data set (Nie L. et al 2007, 
Nie L. et al 2008, America and Cordewener). The parameter value indicates whether 
the transformation is needed and if needed suggests a type of transformation that 
suits best, it includes inverse, logarithmic, square root and square transformations. 

Transformation and normalization operations may not be enough to achieve data 
normality and variance stabilization. An alternative approach is to describe the error 
component of variance using statistical error models (Anderle et al).  

c. Challenges in modelling proteomic data 

The choice of appropriate statistical method in quantitative proteomic experiences is 
complicated by challenges in modelling proteomic data structure. The limited amount 
of sample replicates may impede data modelling with standard distributional 
assumptions. Small sample sizes result in insufficient power of nonparametric tests. 
The absence of consistency of observed evidence across samples increases the 
burden of making inferences on differential expression (Choi et al, Roxas and Li). The 
above mentioned challenges complicate the application of traditional statistical 
techniques and require adaptation of statistical techniques developed for microarray 
analysis to account for specific proteomic data structure (Batscheff et al, Roxas and 
Li, Li and Roxas). 

The assignment of statistical significance to intensity changes can be done at three 
levels: using sample replicates, using peptide charge states or at protein level using 
all observed peptides. Whereas sample replicates are of known quantity, protein and 
peptide level replicates are not known in advance. The number of observed peptide 
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charge states and observed peptides per protein is different across proteins and 
across sample replicates and can only be determined after the measurements were 
done. Therefore the assessment of significance in protein differences both at peptide 
and protein levels raises the concern of modelling unequal proteomic data structure 
(Roxas and Li, Wong J. W. H. et al, Old et al).  

Significance testing based on peptide charge states should be avoided. The underlying 
assumption that peptide charge states are independent protein events is not carefully 
met due to experimental constraints (Roxas and Li).  

2. Statistical methods 

The following subsections describe the approaches to measure statistical significance 
reported in the context of proteomic data analyses. A particular attention is given to 
microarray methods that were already applied or can be potentially applied in 
proteomic analyses.  

a. Fold Change Ratio 

The simplest way to proceed with the selection of differentially expressed features is 
to rank them by fold change ratio between average sample intensities. The higher the 
fold change ratio, the higher the evidence for differential expression. The average fold 
change for sample features on logarithmic scale is calculated as FC = intensityi – 
intenityj. Unfortunately the use of fold change as a rank test precludes the 
assessment of significance of observed differences in the presence of biological and 
experimental variation. If the data is characterised by high variability then the 
features selected as differentially expressed with a simple fold-change cut-off will 
contain a high rate of false positives. More appropriate ranking could be achieved with 
a statistical test accounting for different variability in expression levels of each feature 
(Smyth and Yang, Murie et al). 

b. T-test and its variations 

The t-test and its variations supplement the 
measure of central tendency used to calculate the 
fold change with distribution dispersion parameter. 
The standard t-test uses mean as a measure of 
central tendency and pooled standard deviation as 
a measure of dispersion. The variations of t-test 
account for particular data types by replacing mean 
and standard deviation by more robust central 
tendency and dispersion estimates (Table 3).  

Standard t-test 

If data normality and equal variance can be assumed, the standard t-test (e.g. 
independent two-sided) is an effective approach to evaluate the confidence of 
observed pairwise differences between replicated samples. A practical limitation of the 
t-test application on sample level is the need of three or more replicates to obtain 
reliable results (Bantscheff et al, Zhang et al). The use of t-test to estimate whether a 
protein is likely to be differentially expressed given the list of relevant peptide 
intensities, requires sufficient number of identified peptides. A method that is more 
resistant to outliers, such as Mann-Whitney U-test, may be more appropriate for the 
proteins with only few identified peptides. Another possible solution is a combination 
of outlier removal using Dixon’s Q-test and subsequent application of t-test (Wong J. 
W. H. et al, Old et al).  

Local-pooled-error test 

When lower number of replicates is available the local-pooled-error (LPE) z-statistic 
initially introduced for small sample microarray experiments can be applied to 
evaluate the changes in protein intensities. The LPE test can be considered as a 

T- test  Dispersion  

Standard Pooled 

LPE Pooled 

SAM Threshold-corrected 

Limma Shrinked 

Bayesian  Bayes posterior 

Table 3: T-test variations 
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variant of the t-test that uses medians rather than means to calculate the fold 
change. An additional difference is that the pooled variance is calculated using a 
calibration curve derived from a pool of variance estimates of replicated features with 
similar expression levels (Collinge et al, Zhang et al). To account for increased 
variability of fold change ratios calculated with the use of medians the variance is 

adjusted by π/2. The evidence for differential expression under the null hypothesis is 

assessed through the probability associated with z-statistic and calculated by 
reference to the standard normal distribution (Murie et al). 

It was reported that the LPE test performs better than the standard t-test when only 
duplicates are available, but it can be applied only if changes are of sufficient 
magnitude. For two-fold changes in abundance this test showed a very poor 
performance (Zhang et al, Bantscheff et al).  

Cho and colleagues developed an advanced error pooling technique that uses a 
weighted variance estimate between the two variance estimates rather than pooled 
error variance of adjacent intensity proteins.  

T-test with Bayes posterior variance 

Empirical Bayes method can be used to estimate the error associated with differential 
expression. Then the variance used in t-test can be replaced with posterior variance 
calculated using Bayes rule. The posterior variance is a combination of the observed 
error and prior distribution estimates. A number of tests representing different 
approaches for prior degrees of freedom and variance estimates were introduced for 
microarray data analysis (Murie et al). Unlike other methods provided within specific 
microarray analysis software, Linear Models for Microarray Data (Limma) is an R 
package and is therefore available for adaptation to proteomic context (Smyth 2004, 
2005). Limma statistics is integrated in Corra tool for quantitative label-free 
proteomic analyses (Brusniak et al). 

Murie and colleagues showed that Limma t-test has higher statistical power than 
traditional t-statistics and LPE test. Limma t-statistic is based on a fitted linear model 
of expression where the variances of the residuals are assumed to be drawn from a 
chi-square distribution. 

Significance Analysis of Microarray (SAM) 

Significance Analysis of Microarray (SAM) method developed to tackle the multiple 
testing problem with t-tests builds upon q-value as a measure of significance. Roxas 
and Li demonstrated the applicability of this technique to the analysis of proteomic 
data. The evidence for differential expression is indicated by the difference between 
the score for relative differences in expression (observed score) and the score for 
random fluctuation in samples (expected score) calculated for each protein. The 
advantages of SAM are its availability and rich informational content, the limitation is 
the need to have replicated samples (Roxas and Li). 

c. Permutation tests 

In t-test analysis p-value can be calculated from theoretical null distribution of 
possible score values, assuming that the null hypothesis is true. Another way to 
calculate p-value is to simulate null distribution using nonparametric permutation 
tests that exchange labels of data points for significance calculations. The test values 
are iteratively computed for each feature in data set with randomly reassigned labels. 
The advantage of permutation tests is the absence of any assumptions about data 
structure (Listgarten and Emili). 

d. Combined parametric and nonparametric testing 

Li and Roxas report an approach applicable in the conditions of limited number of 
replicates. Significant changes in the abundance of observed proteins are 
discriminated by three criteria: threshold on minimum fold-change, threshold on 
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significance test score and the requirement to pass the two thresholds in a minimum 
number of permuted sample pairings. Initially study assessed the use of both 
parametric t-test and nonparametric Mann-Whitney U-test as a significance test, but 
finally recommends using t-test as most effective one in combination with 
permutation testing. 

e. ANOVA-based approaches 

maSigPro procedure developed for the analysis of microarray data includes a two-step 
regression approach to the analysis of time series that uses ANOVA P-values to find 
the significant genes (Conesa et al). This approach is included in the Corra 
quantification tool (Brusniak et al). Another approach combining an error model and a 
generalization of the ANOVA (Analysis of Variance) was reported by Huang and 
colleagues. A mixed linear model was used to estimate the significance of measures. 

3. Significance threshold 

The significance threshold serves to select the features to be called significant from 
the list of all features ranked in the descending order of evidence for differential 
expression estimated with a statistical test. A common way to proceed is to determine 
a sensible cut-off for p-value that aims to control the false positive rate (FPR) 
calculated as the ratio between the number of false positives and the total number of 
negative events. The p-value of a feature is a probability a statistic is as extreme as 
or more extreme than the observed statistic, given that null hypothesis that there is 
no differential expression is true. The difference is called significant if the p-value 
estimated by statistical hypothesis test is less than a significance threshold (Storey 
and Tibshirani). 

Typical thresholds applied to p-value are 0.01 and 0.05. Using significance level set to 
such values becomes problematic when multiple proteins are analysed 
simultaneously. Multiple testing tends to produce low p-values even in the absence of 
true differences. P-value threshold should be adjusted to account for multiple testing 
problem. Bonferroni approach suggests dividing the threshold by the number of 
features in consideration to control the family-wise error rate. However, strong 
control of FPR with Bonferroni correction is done at cost of high number of false 
negative results (Gutstein et al, Listgarten and Emili).   

Other reported approaches to tackle multiple testing problem rely on control of the 
false discovery rate (FDR) calculated as the ratio between false positives and the total 
number of positive results (Gutstein et al, Li and Roxas, Storey and Tibshirani). These 
approaches can be used to determine the significance threshold at desired FDR given 
the list of p-values. The thresholds determined with these approaches tend to be less 
stringent than with Bonferroni approach (Gutstein et al).  

An alternative to the p-value, a q-value was introduced as a control measure for FDR. 
It estimates the significance for each feature automatically taking into account the 
fact of simultaneous testing of multitude of features. The use of FDR rather than FPR 
is reported to be a more appropriate measure in biological context. Whereas a 5% 
cutoff in p-value indicates the percentage of truly null features that are called 
significant, it does not actually describe the whole population of features detected as 
significant. A 5% q-value cutoff indicates a proportion of significant features that are 
false, thus providing for a meaningful measure of features called significant (Storey 
and Tibshirani, Listgarten and Emili).  
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III. Materials and Methods 
The framework was developed and validated using a test data set of E.coli lysate with 
four spiked proteins at different concentrations (Table 4). The concentrations were 
adjusted to test the validation criteria discussed in section IV and to imitate the 
complexity of real samples. Samples were analysed by LC-MS/MS on a LTQ-Orbitrap 
platform. Spectra converted to mzXML format and Mascot identifications converted to 
pep.xml format were submitted for quantification with SpecArray and SuperHirn. The 
lists of extracted and aligned features were converted to a common format and used 
for the development of analytical framework. Statistical tools for differential 
expression and quality analyses were developed in R programming language (R 
Development Core Team). The validated pipeline was applied to a biological data set 
from human cells submitted to heat shock.  

A. Data sets 

1. Test data set 

Four test samples were prepared with the 
extracts from E.coli and four spiked standard 
proteins of known concentrations. The fold 
change is ranging from 1.4 to 20 between the 
samples (Table 4). Standard proteins included 
bovine serum albumin (BSA), chicken ovalbumin 
(OVA), horse myoglobin (MYG) and bovine β-
casein (CAS). Myoglobin and albumin ratios 
listed in Table 4 represent linear data series and 
exponential data series respectively. The protein 
concentrations were selected according to the 
desired validation criteria discussed in section 
IV. The BLAST analyses of standard proteins against E.coli database showed no 
significant similarities and confirmed the applicability of the above-mentioned 
standard proteins for spiking experiment. 

E.coli cell lysate preparation and protein extraction were 
carried out according to the standard procedures. 
Proteins were digested overnight with trypsin. Peptide 
mixtures were desalted, spiked with digested standard 
proteins and analysed by LC-MS/MS on a hybrid LTQ-
Orbitrap mass spectrometer. The accurate mass full scan 
MS was obtained in Orbitrap at resolution of 60,000 and 
data-dependent MS/MS identification was acquired in 
linear ion trap. The total scan cycle contained five scan 
events, one for MS1 and four for MS/MS. Four most 
intense product ions in MS spectra were selected with 
two minutes dynamic exclusion time for MS/MS 
fragmentation in linear ion trap. The samples were 
injected one after another with one wash cycle in 
between (1, wash, 2, wash, 3, wash, 4, wash, and so 
on).  

The Mascot search was done against a custom E.coli database, containing the 
additional sequences of the four standard proteins and trypsin. Fixed modifications 
included carbamidomethylation of cysteine residues, whereas variable modifications 
included deamidation of asparagine and glutamine as well as methionine oxidation. 
Other search parameters are summarised in Table 5. 

Sample:  1/1 2/1 3/1 4/1 

E. coli  1 1 1 1 

BSA 1 0.5 4 2 

MYG 1 2 3 0 

OVA 1 5 0.2 1.5 

CAS 1 0.7 0.3 7 

Table 4: Spiked protein ratios in 
E.coli lysate (test data set) 

Parameter Value 

Enzyme Trypsin 
Mass values Monoisotopic 
Protein Mass Unrestricted 
Peptide 
mass tol. 

± 10 ppm 

Fragment 
mass tol. 

± 0.5 Da 

Max missed 
cleavages 

1 

Instrument 
type 

ESI-TRAP 

Table 5: Mascot search 
parameters 
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2. Biological data set 

Biological data samples were prepared with cell lysate extracts from human BJAB cells 
stimulated by heat-shock. Three BJAB cell samples were incubated at different 
temperatures: 37°C (control), 40°C and 42°C for 6 hours. Cells were lysed in 
ammonium bicarbonate 50 mM buffer in presence of phosphatase and protease 
inhibitors and extracted in the same buffer with the addition of 8M of urea. 200 µl of 
cell extract was precipitated with acetone at -20 °C. Cell extracts were re-suspended 
with 8M urea and digested according to a standard protocol with the use of 8 µg of 
trypsin. Each sample was desalted and analysed on LTQ-Orbitrap with four replicate 
injections.  

Replicated samples were injected in the following order: 1 (37°C), 2 (40°C), 3 
(42°C), wash, 2, 1, 3, wash, 1, 3, 2, wash, 3, 2, 1. Thus each sample was on the 
first, middle and last injection position of the four replicate blocks. Mascot search was 
done against SwissProt database, Homo sapiens taxonomy. Search parameters were 
the same as for the test data set (section III.A.1) with an additional variable 
modification: protein N-terminal acetylation. 

3. Data quality assessment 

The quality of LC-MS runs of test data set was assessed by examining data clustering 
patterns. The undifferentiated E.coli peptides dominate the composition of all test 
data samples and therefore the dendrogram of all extracted features with either 
SpecArray (Appendix, Figure 26) or SuperHirn (Appendix, Figure 28) does not indicate 
any clustering patterns and shows that the difference distances between replicated 
samples are relatively small. The dendrogram of peptides assigned to spiked proteins 
shows that each sample replicates are clustered together, indicating the similarity of 
relevant replicates and differences in expression across samples. See Appendix, 
Figure 27 for SpecArray results and Figure 29 for SuperHirn results. 

B. Framework development 
The integration of different software to a common processing Linux environment 
required the development of shell command sequences to launch the relevant parts of 
the program in an automated way. A dedicated output converter was developed for 
each program. In addition, programs required specific output treatment in order to 
achieve equivalent results for analysis. Thus the SpecArray processing was 
supplemented with MS2 identifications parser and SuperHirn was supplemented with 
peptide identification probability filter. Whereas the filter was developed for specific 
SuperHirn output, the parser of identifications was developed for any program output 
lacking MS2 identifications. The parser was implemented in Perl for Mascot dat files. 
Parameter tuning required additional shell command sequences for each integrated 
software program. Depending on a particular tool these may range from simple 
parsing of desired test parameter values to a template parameter file, as it is done in 
case of SuperHirn, to whole program recompilation as it is done in case of SpecArray. 
The processing frame was developed in a flexible way allowing for inclusion of 
additional software tools and processing options. 

Common statistical framework was developed in [R] environment (R Development 
Core Team) and included three modules:  

• differential expression analysis,  

• performance analysis,  

• visualisation.  

Differential expression analysis part contains functions for data transformations and 
normalisations, functions to calculate the averages and ratios on sample and protein 
levels, the average can be customised (median, mean trimmed or not, sum, etc). The 
protein level calculations can be carried on replicate or sample value level. Other 
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functions include t-test, outlier removal (for protein level only) and calculation of 
coefficient of variation (CV) and data completeness filter. The differential analysis part 
pre-calculates indexes for all parameters, such as identification presence, ratio, p-
value and CV thresholds, completeness, these indexes are used by plotting and 
performance analysis functions. 

Thus all settings are known and stored in log file and R-data object. The output of 
differential analysis consists of tables with peptides, features and proteins and their 
corresponding ratios and other estimates. In addition, an R-object with whole data is 
exported and can be used for custom analyses and data extractions in R.  

The module for performance analysis contains three scoring functions: ROC-based 
scoring that can be performed for peptide and protein levels and can be used within a 
context of spiked or not experiment, accuracy scoring for peptides and accuracy 
scoring for proteins, both can be used only within a context of spiked experiments. 
Scoring adjustment mechanism allows integrating in final score a measure of total 
number of complete extracted features when relevant. The ranking functions are 
supplemented with plotting options and an additional error plotting function is 
developed to browse false positive, true positive and false negative identifications of a 
spiked experiment. In addition, experiment wide statistics can be compared, such as 
the total number of identified features, the percentage of complete features, etc.  

The module for visualisation includes individual feature plots and clustering functions. 
The plot data can be filtered by charge, identification and completeness. Specific 
identifications can be selected by specifying the accession number in a complete form 
or as [R] regular expression.  

1. Framework scope 

Scope of the framework:  

• detecting changes in abundance for low abundance components 

• detecting changes in abundance in complex protein mixtures 

• providing tools for parameter tuning 

• suggesting optimal parameters for LTQ-Orbitrap platform 

• single data entry – multiple analysis possibilities 

• not requiring extensive informatics skills from a user  

• additional options for experienced users 

2. Data structure 

The implemented data structure allows for comparison of samples with differing 
numbers of replicates: each sample data is stored as a separate intensity data 
dimension. A complete data object is calculated in module for differential analysis. 
Thus the modules for performance analysis and plotting use the pre-calculated 
information. The data is structured according to the following first-level dimensions: 

• Feature level (mass-to-charge, retention time, sequence, identification, etc.) 

• Intensity (list of matrices with original, transformed and/or normalised 
intensity values per sample) 

• Replicate CV (for intensities and logarithms of intensities) 

• Replicate CV statistics (percentage of features passing a CV threshold) 

• Sample averages (matrix of replicate averages per sample) 

• Peptide ratios (matrix) 

• Peptide p-values (matrix) 
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• Proteins (vector) 

• Protein CV (for ratios and logarithms of ratios of peptides for each protein) 

• Protein averages (matrix) 

• Protein ratios (matrix) 

• Protein p-values (matrix) 

• Experiment statistics (total numbers of features, proteins, complete data, etc.) 

• Indexes (a list of indexes calculated for different parameters) 

• Options (dependencies used in calculation) 

• Log information 

3. Input and output 

Input files for currently implemented programs (SpecArray and SuperHirn) are mzXML 
and pep.xml files. Output of quantitative programs is done in a form of list of matched 
features and is transformed to a common format submitted to analytical modules. 
Statistical analysis generates global data object (Rdata) in a separate directory based 
on job number and input file name. All analyses from same program are stored in a 
specific directory by program name (sa for SpecArray and sh for SuperHirn). ROC 
analysis function generates specific data object with ROC values for each submitted 
job (Rdata.roc). Ranking functions generate [R] objects with score output. In 
addition, statistical analysis generates a series of tables and plots for desired 
elements or totality of data objects.  

4. Accuracy scoring 

Two types of scoring were integrated in the pipeline to allow for performance 
evaluation: 

• ROC-based scoring 

• Trueness and precision (accuracy) scoring 

The ROC scoring is based on the total area under curve and the number of true 
positives at defined cut-off of false positives. Several false positive cut-offs can be 
used within the same scoring. Performance can be assessed in terms of two 
classifiers: t-test p-values and ratios.  

The trueness and precision scoring is based on the following accuracy measures:  

1. absolute mean deviation,  

2. trueness of mean value, 

3. trueness of median value, 

4. standard deviation (SD) 

The absolute mean deviation is calculated as a mean of absolute differences between 
the theoretical ratio values and corresponding measured ratios. The trueness is 
calculated as a deviation from theoretical value of geometric mean and median 
peptide ratios using the following formula: (observed average ratio – theoretical 
ratio)/theoretical ratio.  

Trueness and precision scoring function first calculates the four accuracy measures for 
differentiated and pooled undifferentiated proteins of each test. ROC scoring function 
first calculates the AUC and the TP fractions at given FP cutoff for each test. Then 
each test is compared against the other tests and matrices with the differences are 
generated for each comparison. Columns of matrices represent all scores received by 
a given test for a specific accuracy measure and therefore column sums of matrices 
for all comparisons of a given test yield sub-scores for accuracy measures. The total 
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score is calculated as a sum of relevant sub-scores. Thus the sub-score and final 
score value magnitude depends on the number of tests compared and reflects the 
actual difference in performance measures.  

Both types of scoring can be adjusted by the total number of extracted features that 
are present in all replicates of at least one sample. Adjustment coefficient is 
calculated by dividing a vector of extracted features by its smallest value. Then the 
final scores are multiplied by respective adjustment coefficient. 

C. Parameter tuning  
Parameter tuning was performed using the 
same baseline settings for statistical result 
processing listed in Table 6. The analysis 
was based on the evidence for differential 
expression at feature level in terms of fold-
change magnitude and p-value calculated 
with two-sided t-test assuming equal 
variance at confidence level of 95%. At 
least 2 replicates were required for t-test 
calculation. The assessment of evidence for 
differential expression at protein level was 
done only for the approaches selected as 
the most optimal in parameter tuning analysis.  

Trueness and precision scoring was done with equal weights for all parameters. 
Scores for SpecArray were adjusted by the total number of complete extracted 
features. The ROC-based score was calculated for the performance of two classifiers: 
ratios and p-value. Only the identified peptides were included in scoring, as their 
identification allowed the establishment of the ground truth: indexing peptides that 
are truly differentially expressed. Peptide identification was based on Mascot search 
(section III.A.1): for SpecArray only the identifications with Mascot ions score bigger 
than 14 were considered, whereas for SuperHirn only the identifications with the 
probability higher than 80% were considered. Peptide identifications were parsed in 
SpecArray results in three iterative steps: first by parsing the identifications that pass 
5 ppm mass-to-charge ratio threshold and 0.5 minutes retention time threshold, then 
the retention time threshold was increased to 1 minute and finally mass-to-charge 
threshold was set to 10 ppm and retention time threshold to 2 minutes.  

SpecArray parameter tuning included six parameters listed below as defined in 
program parameter specification file SpecArray.h, the abbreviation assigned to each 
parameter during parameterisation analysis is provided in the brackets. The values 
tested for each of the six parameters are provided in the Appendix, section C. The 
template file with parameter definition was generated and program was recompiled 
for each parameter set and stored in a relevant test folder. A more detailed discussion 
of tested parameters is available in section V.A. 

SpecArray parameters included two data pre-processing parameters:  

• smallest m/z value (VAL_DMZ_PP), 

• peaks averaged over m/z interval (VAL_DELMZ_PP); 

Two parameters involved in feature extraction: 

• m/z tolerance (VAL_DMZ_FE), 

• cut-off SNR for a signal (VAL_SNR_FE); 

As well as two parameters involved in peptide matching: 

• maximum m/z difference between partners of a pair (VAL_MXMZ_AL), 

• cut-off standard deviation of m/z difference between LC runs (VAL_MNMZ_AL). 

Option Value 

Data completeness Minimum 1 sample 

Outlier-removal No 

Transformation Logarithm base 2 

Sample average Mean 

Protein average Median, sample-level 

ROC, FP thresholds 0.01, 0.05, 0.1 

Table 6: Statistical parameters for 
software tuning 
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SuperHirn parameterisation analysis included five parameters that are listed below as 
defined in ROOT_PARAM.def file. The abbreviation assigned to each parameter during 
parameterisation analysis is provided in the brackets. The values tested for each of 
the tested SuperHirn parameters are given in the Appendix section Table 16. The 
parameters were parsed in default parameter file template stored at relevant test 
directory to execute each of the settings.  

The following five SuperHirn parameters were included in parameter tuning analysis: 

• retention time tolerance (RTT): tolerance with which LC-peaks will be merged 
after the alignment of the spectra 

• retention time window (RTW): retention time window (min) to search for 
common peaks before the alignment 

• FT peak detect MS1 m/z tolerance (FTMZT): defines which tolerance is used to 
cluster different m/z values into a m/z cluster 

• FT peak detect MS1 intensity min threshold (FTIT): MS1 minimal intensity, all 
peaks with small intensity are not considered 

• MS1 max inter scan distance (MISD): defines how many scans can be between 
members of a LC elution peak, MS2 scans are not included 
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IV. Validation Method 
The validation method relies on the use of test data set (section III.A.1) as a 
reference standard in order to validate the developed framework and parameterise 
the integrated software for the optimal performance within a given analytical platform 
based on LTQ-Orbitrap. The validated approach is then applied to biological samples 
described in section III.A.2.  

The validation is based upon the following criteria: 

• accuracy in terms of specificity and sensitivity, 

• accuracy in terms of precision and trueness, 

• limits of quantification, 

• linearity and exponential non-linearity. 

The aforementioned validation criteria include two different measures of performance 
accuracy. On one hand, the validity and accuracy of a given approach is assessed in 
terms of sensitivity and specificity and the trade-off between these two. On the other 
hand the actual accuracy of measurements is assessed in terms of trueness and 
precision of measured values.  

To imitate the complexity of biological samples the spiked proteins are not the most 
abundant in the samples. In addition, to test the limits of quantification the smallest 
differences were set to 0.7 and 1.5 ratios (Table 4). Linear and exponential series are 
presented by myoglobin and albumin ratios listed in Table 4. 

A. Accuracy in terms of specificity and sensitivity 
Receiver operating characteristic (ROC) curves are a standard tool for describing and 
comparing the accuracy of laboratory tests (Obuchowski et al). Within this context, 
the accuracy of a test relates to its ability to discriminate between two states, such as 
the presence or absence of differential expression. Thus the accuracy can be 
characterised by sensitivity, the ability of a test to correctly identify differential 
expression, and specificity, the ability of a test to correctly identify the absence of 
differential expression.  

ROC curves graphically describe test performance by representing the relationship 
between sensitivity (vertical axis) and 1-specificity (horizontal axis). The sensitivity is 
the true positive fraction calculated as TP/(TP+FN)1. The 1-specificity is the false 
positive fraction calculated as FP/(FP+TN)2 (Zweig et al). The curve displays the 
accuracy for the entire spectrum of decision thresholds. The accuracy of the same test 
can be assessed at different thresholds by examining the points along its ROC curve 
as well as the accuracy of different tests can be evaluated by comparing the shapes of 
ROC curves. A test with greater accuracy is described by ROC curve shifted upward 
and to the left, resulting in a larger area under the curve (AUC) than one with less 
accuracy.  

Although the higher accuracy of the test is characterised by greater AUC, area alone 
does not indicate test performance at specific threshold, representing all thresholds at 
a time. Thus if a specific FP threshold is desired, then the measure of AUC should be 
supplemented by an estimate of TP fraction at the selected threshold. Test performing 
better at a given threshold may not necessarily be characterised by the greatest AUC.  

ROC-based scoring 

Accuracy scoring in terms of sensitivity and specificity is implemented as a simple and 
practical ROC-based method. The scoring relies on the comparison of AUC and the 
rates of TP fractions at given FP thresholds. The total ROC score combines an AUC 

                                           
1 TP = True positive; FN = False negative 
2 FP = False positive; TN = True negative 
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score and at least one score of TP fraction. If needed a measure of TP score can be 
extracted and used as the only score to select the best performing approach for 
desired threshold. In addition, several thresholds may be specified at once to examine 
the performance of different tests.  

B. Accuracy in terms of precision and trueness 
According to Analytical Methods Committee 
Technical Brief, the accuracy is “the closeness 
of agreement between a test result and the 
accepted reference value”. The evaluation of 
accuracy should include both systematic and 
random error components. A general way to 
estimate the total error of measurement is to 
subtract a reference value from the observed 
value.  

Further accuracy evaluation can be done in 
terms of trueness and precision of test results. 
According to Analytical Methods Committee 
trueness can be contrasted to precision and 
both of them constitute the concept of accuracy 
(Figure 4). On one hand, trueness reflects the 
closeness of agreement between reference 
value and average test results. On the other 
hand, precision reflects the dispersion of data 
points independently of their closeness to the true value. Accurate measurements 
have both high precision and high trueness, as in top-right corner of Figure 4. The 
least accurate measurements are characterised with high dispersion and low trueness, 
bottom-left corner of Figure 4. In the same time the test results can be precise without 
being close to the true value and vice versa the average test results can be very close 
to the true value but have a very high dispersion (bottom-right and top-left corners of 
Figure 4). Having high trueness but low precision may result in the average value that 
is close to the true meaning, but will lead to lower p-values. Depending on dispersion 
patterns such test results may be treated with outlier removal methods.  In its turn, 
the lack of trueness for precise measures is a result of systematic errors and 
therefore the bias can potentially be corrected, provided that enough information on a 
given systematic error is available.  

Validation procedure based on spiked data set allows using theoretical protein ratios 
as reference values for accuracy assessment. Total error and trueness can be 
calculated based on closeness of measurements to theoretical values. Precision of 
results can be evaluated by grouping relevant peptide ratios per protein and 
estimating their dispersion. Since the accuracy of results depends mainly on the 
performance of quantification software, provided the peptide identifications are 
assigned correctly, the appropriate accuracy scoring on peptide level is indispensable 
for parameter tuning task. In addition to that the accuracy can be assessed on protein 
level, thus allowing for fine tuning of statistical method to calculate protein ratios. 

Trueness and precision scoring 

All accuracy measures listed in section III.B.4 are calculated for corresponding 
peptide ratios of each differentiated protein and for pooled undifferentiated peptides. 
These measures included the estimate of total error as well as the estimates of 
precision and trueness. There are several reasons to use the SD rather than 
coefficient of variation (CV) as a measure of precision. First as defined above, the 
term precision refers only to the dispersion of data points independently of the 
trueness of values. In terms of this definition the standard deviation weighted by 
mean is not a measure of precision but is rather a way to measure accuracy by 
integrating both trueness and precision estimates. Second, the accuracy is already 
measured as a total error and the trueness component is measured as an error of 

 

Figure 4: Precision and trueness 
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nT.P CV 
score �  

 
 Score         absolute       mean       median      SD 
                 mean dev.   trueness    trueness 

The validation data set mimics four accuracy cases 
displayed in Figure 4: T.P, TnP, nT.nP, nTnP 

T=true, P=precise, nT=not true, nP=not precise 

Figure 6: Validation of accuracy scoring: 
sub-scores for trueness and precision 
measures of validation data set 

 
 Total       T.P            TnP           nT.P          nTnP 
 Score      test           test           test           test 

T=true, P=precise, nT=not true, nP=not precise 

Figure 5: Effect of SD sub-score weight on 
scoring performance 

mean and median results. Finally, the use of CV will penalize the cases when the 
theoretical ratio is detected with better trueness in favour of the cases with equivalent 
standard deviation, but bigger observed mean ratio. Therefore the SD is used as a 
measure of precision to complement the measures of trueness and total error 
included in the scoring function.  

To validate the performance of suggested scoring function, the validation data set 
included four cases displayed in Figure 4 (Appendix, Table 13):  

1. Results with high trueness and precision (test T.P) 

2. Results with high trueness, but low precision (test TnP) 

3. Results with low trueness and high precision (test nT.P) 

4. Results with low trueness and low precision (test nTnP) 

Final accuracy sub-scores calculated 
for each accuracy measure as defined 
in section III.B.4 and total scores are 
provided in Appendix Table 14. Figure 

6 shows that the test with high 
trueness and precision yields the best 
absolute mean deviation score. 
Trueness of geometric mean and 
median scores are equivalent for both 
tests with high trueness. SD score is 
the same for both tests that have 
high precision. Thus the most 
accurate test (T.P) has the highest 
sub-score only for the measure of 
total error that reflects both accuracy 
sides: precision and trueness.  

As expected, the true and precise test 
yields the best total score (Figure 5, 
weight 1). However the middle cases 
when either trueness or precision is 
lacking do not yield equivalent scores. 
The test that is precise but lacks 
trueness has three times lower score 
than the test with high trueness but 
low precision. Accuracy scoring 
includes two trueness measures 
against one precision measure. 
Measuring the accuracy of mean and 
median is advantageous as depending 
on the data the accuracy may be high 
only for one of these measures. 
Therefore if one needs to promote the 
scoring of precise tests, then the 
weight coefficients can be assigned to 
sub-scores. Thus assigning a weight 

of 2 to SD score and 1 to all remaining sub scores to compensate the presence of two 
measures of trueness will favour the precise test nT.P lacking trueness (Figure 5, 
weight 2). 

The spiked data set analysed with different parameters will yield the results having 
varying precision and trueness, and it is unlikely that there will be one result having 
both high precision and high trueness in comparison to all others. Thus depending on 
the particular goals precise tests may be important to favour. A way to assign a 
weight coefficient is thus provided to allow for better flexibility of scoring function.  
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V. Results 
The developed pipeline provides for a 
common statistical and processing 
framework for different label-free 
proteomics software. The pipeline consists 
of the three building blocks: 
quantification, statistical analysis and 
accuracy analysis (Figure 7).  

The quantification block contains the 
integrated quantitative software packages. 
The target software should be 
incorporated in the automated processing 
flow and supplemented with an 
appropriate converter for generated list of 
features. The initial design of the pipeline 
included two software packages: 
SpecArray and SuperHirn (section II.C.2). 
As for most open source programs, the 
input files to quantitative block are the 
spectra data converted to mzXML format 
and MS/MS identification information 
converted into pep.xml format (Figure 7). 
In addition an input file with relevant 
parameter settings is required for 
parameter tuning based on spiked data 
set.  

Quantification software is used to produce feature lists, which are then converted to a 
common format and submitted for further analysis in statistical analysis block (Figure 

7). An additional user input is required to describe samples by providing the sample 
names and the list of file names without extensions for each relevant replicate MS 
run. This part performs a series of statistical tests to characterise data and estimate 
the evidence for differential expression. The output of statistical analysis includes 
result tables for peptides and proteins with their respective ratios, p-values and other 
measures, such as coefficient of variation. All calculated data is also exported into an 
R data object, containing all measures and indexes for different thresholds and 
characteristics. Thus any of the measures can be explored further in R environment. 
In addition a plotting module was developed with a set of plotting functions to explore 
data quality and patterns.  

R object generated in statistical analysis can be submitted for accuracy analysis 
(Figure 7). All functions included in accuracy analysis are applicable for spiked 
experiments, if spiked protein concentrations are provided as input. A part of 
available analytical tools can be used for all experiments, such as ROC analysis and 
overall comparison of experiments (e.g. total number of extracted features, complete 
features etc.). The accuracy analysis generates type I and II error plots, score plots 
and ROC plots in both ROC and density space. The scores and ROC data are also 
exported as R objects. In addition a table combining the indicators of performance for 
different experiments is created. 

The pipeline was first validated with test data set containing four spiked proteins at 
known ratios. The optimal parameter settings for LTQ-Orbitrap platform were 
determined in parameterisation analysis. The validated pipeline was then applied to 
biological samples using the selected optimal parameters.  

A. Software Parameterisation  
The parameterisation analysis allowed tuning software parameter settings to achieve 
the improved performance on LTQ-Orbitrap platform. In addition it revealed the 

 

Figure 7: Framework overview 
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parameters that are critical for feature extraction and has given an insight on their 
influence.  The main goal of SpecArray parameter tuning is to adapt the package 
developed for Q-TOF mass analyzer for the analysis of high resolution data. In case of 
SuperHirn, the main goal is to reduce the redundancy of extracted features. 
SuperHirn algorithm has a tendency of detecting the same feature for several times 
within a very narrow time (starting from 0.05 minutes) and mass-to-charge ratio 
(less than 1 ppm) interval. 

A number of different parameter settings were 
tested for each program. The selected 
parameters included mass-to-charge ratio peak 
width, mass-to-charge ratio differences 
between scans and between runs, retention 
time window, retention time differences 
between runs (illustrated in Figure 8) and the 
maximum number of scans that can be 
between members of an LC elution peak. The 
tested approaches were assessed for results 
precision and trueness (accuracy scoring) as 
well as for their capacity to distinguish correctly 
differentially expressed features (ROC-based 
scoring), see section IV. As ROC-based scoring 
implements the widely accepted approach for 
test performance assessment the best scoring 
tests were first selected by their ROC-based 
scores for t-test p-value and fold-change 
classifiers and then these tests were compared 
by their accuracy score values. Both 
performance evaluations were based on known 
identities and concentrations of spiked peptides and on Mascot identifications 
assignments to the extracted features. Thus a given feature is considered as 
differentially expressed, if it is identified as a peptide of one of the spiked proteins. 
Therefore the measures of performance depend on the quality of the identification 
assignment.   

1. SpecArray  

Individual and combinatory effects of 
six parameters listed in section III.C 
were assessed with twenty-nine 
parameter settings that included the 
default parameters (Appendix, Table 
15). The score values for four best 
tests determined with this approach 
and for the test with default values 
(test 1) are shown in Figure 9 
displaying the accuracy sub-scores 
and Figure 10 displaying the ROC sub-
scores for the performance of two 
classifiers: t-test p-values (Figure 10A) 
and fold-change (Figure 10B). In terms 
of accuracy scores, tests 13 and 19 
lead in all cases. Although for mean 
accuracy all four selected tests have 
the equivalent performance. For all 
accuracy measures the selected best 
scores have much better performance 
than the default test 1. In terms of 
ROC-based scores, the improvement 
in AUC for the selected tests is not 
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Figure 9: SpecArray accuracy sub-scores for 
different parameter settings (Table 15) 

 

 

Test 1 
Test 13 
Test 19 
Test 22 
Test 27 

 

Figure 8: Types of tested parameters 
based on intensity, mass-to-charge 
ratio and retention time  
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very high. This effect is mainly due to the small number of extracted features in the 
default test leading to unreasonably high values of ROC-based measures, the detailed 
discussion is available in section VI.A. The major improvement in the perormance is 
achieved for 0.01 FP threshold. All selected tests have equivalent score values for 
AUC measures for both classifiers and for TP fraction measures in case of t-test p-
value classifier. However the performance for fold-change classifier is different, 
especially for 0.01 FP threshold, which is of most interest. For this threshold tests 13 
and 19 are leading, followed by test 22. In terms of 0.05 FP threshold for fold-change 
classifier, test 19 is the best, followed by test 27. Test 19 parameter settings were 
selected as opmtimal parameter settings for the analysis of biological data set with 
SpecArray.  

 

The selected four tests have four common parameter values out of six. The values for 
parameters involved in spectra pre-processing were decreased four times in 
comparison to default values, the smallest mass-to-charge value was set to 0.005 
and the interval over which peaks are averaged to 0.025. The analysis showed that 
four-fold reduction of the values for these parameters improves the accuracy and 
increases the number of total extracted complete features. A test with all default 
parameters except for two pre-processing parameters (test 7, Table 15) yields almost 
twice more extracted features than the default parameters test. Another two common 
parameter values of the selected tests are set for the parameters involved in feature 
extraction. The signal to noise ratio cut-off was lowered from 5 to 2 (VAL_SNR_FE) 
and the threshold on mass-to-charge ratio used to discard the overlapping peptides 
was decreased five times to 0.01 (VAL_DMZ_FE). The values of remaining parameters 
are also lowed than the default values, although different values are used in each of 
the selected tests.  

Test 19 was further examined to check if linear and exponential data series were 
maintained. Myoglobin and albumin are expected to present linear and exponential 
series respectively; the theoretical ratios are listed in the Table 4. Figure 11 shows 
three replicate values normalised by average value of sample one plotted for each 
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Figure 10: SpecArray ROC sub-scores for different parameter settings (Table 15): 
A) T-test P-value classifier, B) Fold change classifier 
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sample. Mean and median values are indicated with plus and cross signs. The 
replicate points are rather dispersed, although the respective mean and median 
values approximate the expected linear and exponential patterns. Similar patterns are 
observed for most of the peptides assigned with albumin or myoglobin identification.   

Figure 12 shows the scatter plot of features quantified with default parameter settings 
(test 1) and using the parameter settings of test 19, selected as optimal. Under the 
default parameters only 1096 features are extracted. Albumin is the only differentially 
expressed protein that has measured relative abundance for sample 2 over 1 with 
three peptide ratios. The results of test 19 contain 2265 extracted complete features, 
more than twice as much as default test. Test 19 measures the relative abundance of 
features that were assigned to three out of four differentially expressed proteins in 
sample 2 over 1. The measured ratios are clustered around the expected theoretical 
values. The smallest ratio of 0.7 for casein is not detected with any of the tested 
approaches. The smallest detected ratio is 0.66 (not on the plot).  

 

  

A B 

Figure 12: Sample 2 versus sample 1 feature fold change using different parameter 
settings of SpecArray: A) default parameters (test 1, Table 15), B) optimal 
parameters (test 19, Table 15) 

log2(ratio)          feature#                                 log2(ratio)                    feature# 
                  (increasing m/z order)                                             (increasing m/z order) 

Theoretical ratios for differentiated proteins are indicated on the left of the plot in respective colour 

ECOLI ECOLI 

 

 

Figure 11: Feature ratio measurement in linear and exponential series by 
SpecArray with optimal parameter settings (test 19, Table 15) 
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Figure 14: SuperHirn ROC sub-scores for 
different parameter settings (Table 16): A) T-test 
P-value classifier, B) Fold change classifier 
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Figure 13: SuperHirn accuracy sub-scores 
for different parameter settings (Table 16) 
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2. SuperHirn  

The influence of five SuperHirn 
parameters was assessed using thirty-
four parameter settings tested for 
SuperHirn program (Appendix, Table 
16). A particular attention was given 
to the assessment of lower and upper 
limits for minimum signal intensity 
threshold (FTIT). The values ranging 
from 1 (no intensity threshold) to 
1,000,000 were tested. The results 
with threshold value set to one million 
could not be submitted for the 
statistical analysis, because the 
abundance values for some of the 
extracted features contained exactly 
the same value in several replicates. 
For example, test 15 contained a 
feature with 810.639 mass-to-charge 
ratio, charge state 3 and elution time 
19.37 minutes that had exactly the 
same 9-number abundance value 
(equal exactly to 313,574,656) in four 
replicates (two of sample 2 and two of 
sample 3). The SD required for t-test 
can not be calculated with these 
numbers. The raw data revealed that 
the retention time and mass-to-charge 
coordinates correspond to a peptide signal and not an artifact (Figure 21). However 
the intensity of this signal is less than selected intensity threshold and therefore this 
peptide should not appear in the list of extracted features. Apparently the feature 
extraction algorithm is 
not adapted for very 
high intensity 
thresholds. Thus a 
tested maximum limit 
for intensity threshold 
equals to 100,000. Tests 
with intensity threshold 
set to million were not 
included in further 
analysis. 

Three tests were 
selected according to 
their ROC-based scores 
and accuracy scores. 
The scores for results of 
these tests and the 
default parameter test 
(test 10) are shown in 
Figure 13 containing  the 
sub-scores of accuracy 
score and Figure 14 
containing the sub-
scores for t-test p-value 
and fold change 
classifiers.  
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In terms of accuracy score values, the performance is mainly improved for total error 
measured by mean of absolute deviations form theoretical ratios values and for 
standard deviation. The performance in terms of mean and median values accuracy 
was improved to a smaller extent. Since the absolute score value emerges from the 
actual differences in accuracy parameters, it may indicate that the accuracy of mean 
and median values for some of the proteins was relatively low already in the case of 
the default parameter test and hardly changed for other settings.   

In terms of ROC-based scoring, the performance improved according to all measures. 
Test 23 is leading for FP threshold 0.01 and 0.1 in case of t-test p-value classifier. In 
case of fold change classifier test 37 has top scores for both AUC and all FP 
thresholds. The discrimination of differential expression based on fold change 
evidence is of particular interest. Since test 37 has relatively equivalent performance 
for t-test p-value classifier as test 23, it was selected as optimal parameters to ensure 
the efficient discrimination with fold change.  

Parameterisation analysis showed that the parameter defining the retention time 
tolerance (RTT) to merge peaks after the alignment has no influence on the final 
results within the tested parameter settings. Thus tests 23 and 29, tests 26 and 32 as 
well as tests 12 and 17 yield exactly the same results, given that they differ only in 
retention time tolerance value, 0.5 minutes (default value) and increased to 1 minute. 
The value of retention time tolerance was increased in order to explore if the 
redundancy in feature detection was diminishing.  

On the other hand parameterisation showed that intensity threshold is a critical 
performance parameter. All selected tests included the intensity threshold parameter 
set to its upper limit of 100,000. Setting this threshold too low decreases the quality 
of results, whereas increasing this threshold alone to 100,000 yields significant 
improvements. Increasing the gap for scans between members of LC-MS elution peak 
in combination with intensity threshold set to 100,000 seems to diminish the 
redundancy of extraction (section VI.B). 

Test 37 was examined further to check if linear and exponential series were well 
maintained. Myoglobin and albumin are expected to present linear and exponential 
series respectively; the theoretical ratios are listed in the Table 4. Figure 15 and Figure 

16 show three replicate values normalised by average value of sample one plotted for 
each sample. Mean and median values are indicated with plus and cross signs. The 
linearity and exponential series are rather well maintained in Figure 15, representative 
of numerous peptides assigned albumin and myoglobin. The case of albumin 
illustrates very good clustering of the replicate values, indicative of high sub-score for 

 

 

  

 
 Figure 15: SuperHirn Exponential and Linear Series: good examples of feature 

ratio measurements using optimal parameter settings (test 37, Table 16) 
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standard deviation. However there are also present the cases when the dispersion is 
very big as in Figure 16 illustrating the observed cases when linear and exponential 

series of features assigned to myoglobin or albumin are not maintained. The possible 
reason for that is not necessarily the bad intensity integration or peak during feature 
extraction, but the erroneous identification of feature. The identifications originate 
from Mascot search done for MS/MS spectra. The error may occur not only in Mascot 
identification itself, but also be produced during SuperHirn processing of Mascot 
identifications. A detailed discussion is available in section VI.C.  

Figure 17 shows the performance of SuperHirn with default parameters (test 10) and 
with optimal settings selected in parameterisation analysis. Test 37 differs from 
default parameters in three parameter values: ten times higher intensity threshold 
(100,000), two-times bigger inter-scan distance of members of an LC-MS elution peak 
and two times lower mass-to-charge threshold for peak clustering during detection. 
Default test extracts 56,613 features out of which some 25% are present in all 
replicates of at least one sample. Test 37 extracts 34,286 features out of which 28% 
are present in all replicates of at least one sample. The coverage of differentiated 
proteins is maintained despite the reduction in the number of extracted features, 

 

 
Figure 16: SuperHirn Exponential and Linear Series: bad examples of feature 

ratio measurements using optimal parameter settings (test 37, Table 16) 

 
test 10 

 
test 37 

log2(ratio) log2(ratio) 

 

Figure 17: Sample 2 versus sample 1 feature fold change using different parameter 
settings of SuperHirn: A) default parameters (test 10, Table 16), B) optimal 
parameters (test 37, Table 16) 

Theoretical ratios for differentiated proteins are indicated on the left of the plot in respective colour 

feature# 
(increasing m/z order) 

 

feature# 
(increasing m/z order) 
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although some data points disappear. The main explanation of reduced number of 
features could be the diminished effect of extraction redundancy (section VI.B.). A 
clear improvement in performance with parameterised values is better clustering of 
undifferentiated features around 0 on logarithmic scale. This illustrates improved 
discrimination of differential expression based on the fold change. 

As in the example of linear and exponential series some peptides assigned to 
differentially expressed proteins have contradicting patterns of expression. The 
reasons are likely to be the same as discussed above. More detailed discussion is 
available in section VI.C. 

B. Biological data analysis  

The biological data set from human cells 
submitted to heat shock (section III.A.2) 
was analysed with SpecArray and SuperHirn 
using the optimal settings selected in 
parametrisation analysis (section V.A). 
SuperHirn retrieved five times more 
features that were present in all replicates 
of at least one sample than SpecArray 
(Table 7). On the other hand these complete 
features represented only 18% of total extracted features by SuperHirn, indicating 
possible intensity signal splitting and redundant extraction problem. For SpecArray 
83% of all extracted features were complete.  

Figure 18 shows the features extracted by SpecArray (A) and SuperHirn (B) for the 
ratio of sample 2 containing cells incubated at 40°C to sample 1 with cells incubated 
at 37°C. The vertical axis represents the logarithms of fold change, whereas the 
horizontal axis represents the extracted feature number, the features are numbered 
in the order of increasing mass-to-charge ratio. To infer the features that are likely to 
be differentially expressed a combined threshold was applied: t-test p-value less than 
0.01 and fold-change bigger than or equal to 1.4 on original scale. The reasons for 
application of combined threshold are discussed in section VI.D.  

 

Although SpecAray extracts fewer features than SuperHirn, it seems to perform better 
in terms of feature intensity integration. It is expected that in biological sample most 
of the features remain on the same level of abundance, thus most of the points 

Software 
Total 
features 

Complete* 
features 

SuperHirn 23,196 4,191 (18%) 

SpecArray 954 792 (83%) 

* present in all replicates of at least 1 sample 

Table 7: Biological data extraction 

  log2(ratio)          feature#                                 log2(ratio)                    feature# 
                  (increasing m/z order)                                             (increasing m/z order) 

● features with p<0.01 and fc >= 1.4 

● features that are present in all replicates of at least one sample and have p-value and fold change 
ratio estimated at least once in whole data set 

A B 

Figure 18: Features extracted from biological data set, sample 2 (40°C) / sample 
1 (37 °C), using A) SpecArray, B) SuperHirn 
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Figure 19: Protein 
identification overlap 
between SpecArray and 
SuperHirn 

should be clustered around zero on vertical axis. Most of the features extracted in 
SpecArray are rather well clustered around zero (Figure 18 A), whereas SuperHirn 
yields rather wide dispersion of measured fold change ratios (Figure 18 B). The reason 
for this could be related to the differences in the implemented approaches for 
intensity integration. SpecArray integrates the intensity of three isotopes and discards 
the overlapping peptides within a defined retention time and mass-to-charge interval 
(section II.C.2.a). SuperHirn derives the abundance information from the intensity of 
the monoisotopic peak and applies the algorithm to resolve the overlapping patterns.  

The benefit of SuperHirn is the high number of extracted features including those of 
lower intensity. On the other side there is a risk of high number of redundant 
extractions and signal splitting. The gaps in the scatter plot in Figure 18 B, indicate the 
regions where the incomplete features (features that are not present in all replicates 
of at least one sample) were filtered out. The biggest amount of incomplete features 
seems to be located around middle mass-to-charge values. For example, features of 
mass-to-charge ratio close to 650 are subject to high number of missing abundance 
values. In addition smaller gaps are visible in the left part of the scatter plot, 
corresponding to small mass-to-charge measurements.  

To further evaluate the performance of the two integrated software, the identified 
features were grouped to proteins. SuperHirn detects and quantifies more features 
and consequently more proteins than SpecArray. The numbers of proteins that have 
at least one peptide present in all replicates of one sample were compared (Figure 19). 
SuperHirn results contain 369 proteins, whereas SpecArray results contain 202 
proteins, out of which 191 proteins are found by both programs.  

In order to infer the proteins that are likely to be differentially expressed in given 
biological samples, a threshold of 1.4 was applied on fold change ratio and a 
threshold of 0.05 was applied on p-value calculated with one-sided t-test on protein 

Protein AC SW N.pp FC CV P-value 

SA 3 1.97 0.12 8.36*10-3 
HS905_HUMAN* 

SH 3 1.53 0.05 4.23*10-3 

SA 10 1.82 0.23 6.83*10-5 
HS90A_HUMAN* 

SH 19 1.43 0.22 1.51*10-7 

SA 4 7.90 NA NA 
HSP71_HUMAN** 

SH 14 2.00 0.55 2.46*10-4 

SA 1 2.32 NA NA 
HS105_HUMAN** 

SH 12 1.55 0.23 2.48*10-6 

SA 5 0.46 0.60 9.82*10-1 
HS71L_HUMAN** 

SH 7 4.84 0.70 2.35*10-3 

SA 4 1.83 0.39 1.76*10-1 
CHRD1_HUMAN** 

SH 7 1.78 0.30 4.10*10-3 

SA 1 1.46 NA NA 
XPP3_HUMAN** 

SH 1 1.51 NA NA 
* p-value<0.05, FC>=1.4 
** FC>=1.4 
SW=software, N.pp=number of peptides, FC=fold change,  
CV=coefficient of variation, SA=SpecArray, SH=SuperHirn. 

Table 8:  Protein differential expression assignment 
overlap in sample 2 (40°C) / sample 1 (37°C) 
between SpecArray and SuperHirn 
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level, null hypothesis is that the mean ratio of relevant peptides is equal to 0. Based 
on these cut-offs SuperHirn yielded 7 and SpecArray 5 proteins that are likely to be 
differentially expressed (Figure 19). Two of these proteins were assigned significance 
by both SpecArray and SuperHirn. 

By applying a threshold of fold change alone, 7 assignments of differential expression 
overlap between 43 total SuperHirn assignments and 18 total SpecArray assignments 
(Figure 19). Table 8 lists the overlapping proteins and their corresponding ratios, 
number of peptides per protein, p-values and coefficients of variation for fold-change 
threshold alone that includes the two overlapping proteins found with combined 
threshold.  

As expected the list of proteins that are likely to be differentially expressed includes 
heat shock proteins. The two proteins found by application of both t-test p-value and 
fold change thresholds, HS905_HUMAN and HS90A_HUMAN belong to heat shock 
protein 90 family according to general annotation in relevant Swiss-Prot entries (Table 

8). HSP71_HUMAN, HS105_HUMAN and HS71L_HUMAN belong to heat shock protein 
70 family. CHRD1_HUMAN interacts with heat shock proteins HSP90AA1 and 
HSP90AB1 in an ATP-independent manner. The only protein that does not seem to 
play a clear role in heat shock is aminopeptidase XPP3_HUMAN. However there is only 
one unique peptide assigned to this protein in both SpecArray and SuperHirn results 
and no shared peptides are present. Therefore the level of uncertainty regarding the 
differential expression of XPP3 is rather high.  

Two overlapping proteins in differential protein lists retrieved by SpecArray and 
SuperHirn using a combined threshold have shared peptides. The three peptides 
assigned to HS905 are also assigned to HS90A. In order to deal with cases of multiple 
peptide identification assignments, the peptide was attributed to the first identification 
in the list. Therefore the three peptides assigned to HS905 may actually belong to 
HS90A. High sequence similarity of heat shock proteins hinders the task of peptide 
grouping to proteins. From the list of peptides that may possibly belong to HS90A, 
there are some 10 peptides in SpecArray results and some 20 peptides in SuperHirn 
results assigned uniquely to HS90A. Other peptides are shared by up to five proteins 
in the same time.  

Protein HSP71_HUMAN that is retrieved by double threshold from SuperHirn results 
has missing p-value and coefficient of variation in SpecArray results, although 4 
peptides are assigned to this protein. The examination of relevant peptides showed 
that 3 out of 4 peptides are not detected in sample 1 at 37°C and therefore result in 
missing p-value for the ratio of sample at 40°C versus 37°C. Since SpecArray uses 
hard-coded threshold on signal intensity, it is possible that some low intensity peptide 
signals are simply filtered out and are detected only when their intensity level 
increases. Thus protein HSP71_HUMAN had only 1 peptide assigned to it in sample 1 
at 37°C and 4 peptides in sample 2 at 40°C.  

In addition, only 3 SpecArray features are identified as unique HSP71_HUMAN protein 
peptides. This matches the Mascot search that finds 3 peptides assigned only to 
HSP71_HUMAN in three replicates of sample 1 at 37°C. Other peptides assigned to 
HSP71 are also assigned to other proteins, for example to HSP7C, to which Mascot 
assigns more than twenty peptides. It is possible that more of the shared peptides 
belong to HSP71, but the inference of these peptides requires additional analysis. 

The ratios retrieved for HSP71 by SpecArray and SuperHirn differ a lot. With the only 
1 quantified peptide in both samples, SpecArray estimates the fold change of 7.9, 
whereas SuperHirn results yield a fold change of 2. On one side SuperHirn yields 
more peptides for the given protein and could potentially produce more reliable 
results, however the corresponding CV in Table 8 is more than 50% and therefore 
could indicate the problem of peptide grouping. Out of all peptides that are assigned 
to HSP71 in SuperHirn results, 12 are assigned only to the given protein, although 3 
of these features seem to be the redundant extractions of the same peptide peak. The 
fold change ratio of peptides assigned exclusively to HSP71 range from 3.4 to 7.6, 
whereas the ratios of peptides with several identifications range from 1.3 to 13.2. 
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Thus it is possible that the true ratio of HSP71 is bigger than 2, provided that some of 
the assigned peptides belong to another protein.  

In addition, redundant feature extraction by SuperHirn in some cases leads to 
intensity signal splitting and thus may impede the calculation of some ratios. A four-
time charged peptide assigned only to HSP71 protein seems to be extracted as three 
different features with maximum time difference of 0.12 minutes and maximum 
mass-to-charge difference of 1.5 ppm. As shown in Table 9, the feature present at 
37°C is not detected at 40°C, whereas two features detected at 40°C are not present 
at 37°C. Moreover at 40°C the detected intensity level is similar for both features, 
although none of these features has observations in all replicates. It seems that 
intensity signal is split among the redundant extractions of the same peptide. If these 
three features would be combined to one feature, then the fold change of sample 2 
(40°C) to 1 (37°C) could be calculated, provided that the abundance estimate is 
present in all replicates of sample 2 and in one replicate of sample 1.  

 

m/z Rt z 37°C, log2(intensity) 40°C, log2(intensity) 

666.316 45.3 4 - - - - - - 28.27 27.84 

666.3164 45.31 4 25.15 - - - - - - - 

666.317 45.42 4 - - - - 28.46 28.73 - 27.63 

Table 9:  SuperHirn redundant extraction of feature assigned to HSP71_HUMAN  
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VI. Discussion 
The main goal of SpecArray parameterisation was to increase the number of extracted 
features while maintaining the sufficient quality of the results. Given the low number 
of extracted differentiated peptides, the use of both types of accuracy scoring 
implemented within a pipeline may lead to misleading results. To avoid high scoring 
of limited feature output, all SpecArray scores were adjusted by the coefficient based 
on the number of extracted features. The optimal settings determined during the 
parameterisation allowed increasing more than twice the number of extractions. 
However even the parameterised SpecArray quantification fails to achieve the 
equivalent level of extraction as SuperHirn. The latter one retrieves about five times 
more features present in all replicates of at leas one sample for the same data set. 
Though SuperHirn extraction is probably excessive as the same peptide peak can be 
extracted several features within a narrow mass and time interval. Such redundancy 
may be problematic for quantification if the intensity signal is split among the 
repeated extractions.  

The parameterisation analysis relied on the assigned peptide identities to distinguish 
the differentiated peptides from undifferentiated ones. The results of performance 
assessment thus depend on the quality of identification. In case of SpecArray the 
identifications were parsed by using threshold on mass-to-charge ratio, retention time 
and Mascot ion score. SuperHirn processes the pep.xml files provided as input and 
assigns probabilities to peptide identifications. The final lists of extracted features 
were filtered by applying a threshold on probability to remove the low probability 
identifications. However, especially in the results of SuperHirn some peptides 
assigned to the same protein had conflicting ratios. One hand there could be a 
problem during intensity integration. On the other hand the peptides may actually 
belong to another protein.  

The biological data set was quantified using the determined optimal settings for 
SpecArray and SuperHirn. In order to infer the biologically significant differences in 
expression a combined threshold was applied on both t-test p-value and fold change 
ratio. The use of each of these thresholds separately is related to a number of issues 
discussed in section VI.D. The results of biological data set analysis confirmed the 
limitations of each quantification program determined during the test data set 
analyses. In addition, the biological data results accentuated the problem of peptide 
grouping to proteins, especially significant for heat shock proteins that have a lot of 
sequence similarities.  

A. Adjusting SpecArray scores  
SpecArray score values were adjusted by the 
coefficient based on the number of total extracted 
complete features. The reason for this is the need 
to integrate the measure of the number of 
extracted features in the scoring results in order to 
find the approach that extracts the maximum 
possible number of peptides, while keeping the 
accuracy at the optimal level. SpecArray signal 
pre-processing and feature extraction are not 
adapted for high-resolution Orbitrap data and filter 
out valuable feature information as discussed in 
the section II.C.2.a. Without score adjustment the 
tests extracting only few differentially expressed 
peptides with accurate and precise values may 
yield high AUC and true positive fractions at 
selected thresholds in ROC analysis. If few 
detected peptides have high fold-change and low 
p-values then they will be distinguished from 

 log2(ratio)            feature#  
                   (increasing m/z order) 

Figure 20: Few differentiated 
peptides in default SpecArray 
results can yield maximal ROC 
measures 

Sample 3/1, test 1 

ECOLI 
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undifferentiated ones at very low false positive 
thresholds. In addition, the accuracy scoring can 
be affected as well. The tests that do not cover all 
of the proteins will not have high scoring; 
however a test extracting only two peptides for 
most of proteins with significant accuracy can 
yield good precision and trueness measures.  

An example of case when ROC-based measures 
are misleading is given in Figure 20. The figure 
shows the logarithms of ratios for sample 3 
versus 1 for test data set quantified with default 
parameters (Appendix, Table 15, test 1). Three 
differentiated peptides are assigned to one spiked 
protein: albumin. The absolute value of 
logarithms of ratios of differentiated peptides is high enough to yield 99.(9)% AUC 
value, and 100% true positive fraction at FP thresholds of 0.01, 0.05, and 0.1 for fold 
change classifier. In addition these peptides have low p-values and yield same 
“perfect result” for p-value classifier. However this case is far to be perfect, with low 
number of detected features and only 3 peptides assigned to a differentiated protein.  

Adjusting scoring values by a coefficient based on the total number of extracted 
features present in all replicates of at least one sample remedies this problem. Thus if 
without adjustment the best scoring tests include the tests with very low number of 
features, then after adjustment the tests with low number of features are no longer in 
the top of the list (Table 10). In the case of SuperHirn the score adjustment is not 
required, because the problem is presented by feature redundancy. Therefore 
approaches yielding the maximum number of extracted features are not necessarily 
the most efficient ones. 

B. SuperHirn redundant extraction  
The redundancy of 
detection of the peptide, 
which induced feature 
extraction problems at 
one million intensity 
threshold, was assessed 
for two tests at no 
intensity threshold, for 
default parameter test 
(test 10) and three tests 
with 100,000 intensity 
threshold, including the 
selected optimal settings 
(Table 11). The tests were 
selected on order to 
assess the effect of the 
inter scan distance 
parameter (MISD) on the 
redundancy of the 
extraction at different 
intensity levels. Thus test 
1 included in the Table 11 
has all default parameters 
and no intensity threshold. Test 2 differs from test 1 in the value of MISD that was 
raised to 10. Default parameters (test 10) have intensity threshold equal to 10,000 
and MISD equal to 5. The test 12 has all default parameters except for intensity level 
raised to 100,000. Test 26 differs from test 12 in the value of MISD raised to 10, 

Posi-
tion 

No 
adjustment 

With 
adjustment 

1 Test 8 Test 13 
2 Test 21 Test 19 
3 Test 1 Test 22 
4 Test 13 Test 27 

5 Test 19 Test 29 
6 Test 22 Test 24 
7 Test 27 Test 21 

Test 1 = default parameters 
Tests yielding low number of features 

Table 10: Effect of SpecArray 
score adjustment based on the 
number of extracted features 

Intensity = 4.65E5 
Redundant extractions with default SuperHirn parameters 

Figure 21: Example of redundantly extracted peptide 

22.7 
17.97 

18.93 

19.11 
19.13 

19.19 
19.56 

20.84 

 23.4 

min 
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Finally, the optimal settings (test 37) include 100,000 intensity threshold and MISD 
equal to 10. 

Table 11 shows the extraction details for peptide with monoisotopic mass-to-charge 
ratio equal to 810.639, charge 3 and retention time equal to approximately 19 
minutes. Figure 21 shows that the peak in raw data corresponding to these 
coordinates is likely to be a peptide, according to its isotopic distribution. The 
chromatographic elution profile seems to be of sufficient quality.  The nine redundant 
extractions of the given peptide under default parameters are shown in Figure 21. 

All tests have mass-to-charge ratio 
tolerance for peak clustering during 
extraction set to 0.01 m/z (default 
value) or lower (0.005 in optimal 
settings, test 37). The maximum 
difference in mass-to-charge values of 
redundantly extracted peptide is smaller 
than 1 ppm (about 0.007 m/z). Thus 
according to this threshold the 
redundant peptides should have been 
grouped together. On the other hand a 
retention time threshold for feature 
merge after the alignment is set to 0.5 
minutes and the minimum difference in 
retention time for these features is small 
enough to group at least some of them 
together. The values for two 
aforementioned parameters do not seem 
to influence the redundancy in a 
significant way. Moreover retention time 
threshold did not yield any changes in 
results of the tested settings.  

According to Table 11 setting an inter-
scan distance to 10 seems to diminish the redundancy of extraction for given peptide. 
Simple reduction of intensity threshold to 1 (test 1) maintains the same number of 
repetitive extractions as in default test. However setting MISD to 10 even at no 
intensity threshold diminishes the number of repetitions to 5 (test 2). If the intensity 
threshold is set to 100,000 (test 12), the redundancy of a given feature increases. 
However if intensity threshold raise is supplemented with MISD raise to 10, the given 
peptide is extracted only once (optimal settings and test 26). Raising intensity and 
MISD values seems to reduce the number of extractions for some peptides.  

One of the biggest problems induced by redundancy is splitting of abundance values. 
Thus minimum and maximum count columns in Table 11 show in how many replicates 
of all samples together (triplicates of 4 samples give 12 total cases possible) the 
abundance measure is extracted. In most of the cases the feature is extracted at 
least once in all 12 replicates; however the redundant extractions cover only some of 
the replicates. The abundance values for redundant peptides may be very intense at 
low count, while at lower intensity at maximum count. In addition the variability in 
replicate values seems to be rather important. The biological data set includes similar 
cases as test data set as discussed in section V.B. 

C. Conflicting peptide ratios   
Figure 22 illustrates an example of conflicting albumin peptide ratios that are pointed 
with arrows. There are two main possible reasons behind this. On one hand the 
conflicting ratios may be due to the erroneous peptide intensity integration or peak 
picking. In case of SuperHirn the errors during feature extraction could be related to 
redundancy of extraction, especially if intensity signal is split. On the other hand the 
features may have a wrong assignment of identification. This may originate from 
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1 9 0.97 0.05 2 12 5 

2 5 0.37 0.31 1 12 10 

10 9 0.97 0.08 2 12 5 

12 11 0.86 0.15 1 12 5 

26 1 - - 12 12 10 

37 1 - - 12 12 10 

Test 1: no intensity threshold 
Test 2: no intensity threshold 
Test 10: default parameters (intensity 10,000) 
Test 12: default + intensity threshold of 100,000 
Test 26: intensity threshold of 100,000 
Test 37: optimal parameters (intensity 100,000) 
MISD = # of scans between members of LC-peak 

Table 11: The effect of MISD and intensity 
threshold on redundant feature extraction 
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incorrect Mascot assignment or be attributable to SuperHirn processing of 
identifications submitted in pep.xml format.  

Table 12 lists features in the same order (increasing mass-to-charge) as in Figure 22 A. 
There is a double extraction for 2nd and 3rd features. None of the extracted features is 
present in all twelve replicates of all samples pooled together (Table 12, column 
count). All peptide identifications are assigned a 100% probability by SuperHirn.   

The best of the matched MS/MS spectra for peptide 1 is shown in Figure 22 B. Several 
peaks of high intensity are not assigned to peptide y or b fragment. The best 
matching spectra yields 18.4 Mascot ion score, whereas other MS/MS spectra for 
same feature yield lower 
Mascot score and also 
match some of the E.coli 
proteins. The Mascot 
assignments for this peptide 
may be erroneous because 
of the presence of 
unspecified modifications or 
absence of the given 
sequence in searched data 
base.  

In its turn, SuperHirn 
processes all possible 
Mascot identifications to 
select the best available and 
estimates the probability of 
this identification. The case 
of peptide 1 illustrates that 
the 100% probability of 
identification can be 
assigned despite the fact 
that the best available 
Mascot ion score is 
relatively low.  

One of the available MS/MS 
spectra for peptide 2 is 
shown in figure Figure 23 A. 
This spectrum yields rather 

 

Figure 23: MS/MS spectrum of A) feature 2 B) feature 3 
(Figure 22 A) 

Mascot ion score: 
45.6 for albumin 

 

Mascot ion score: 
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Figure 22: A) Conflicting albumin ratios 
in SuperHirn results for the test data 
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sample 2 / sample 1 

B) MS/MS spectrum of feature 1 
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high Mascot ion score of 42.3, however few intense peaks are not assigned to peptide 
fragments. Other available spectra are of the similar quality. In this case again, the 
peptide may be wrongly identified by Mascot. However if the identification is correct, 
then the conflicting ratio may be the results of signal splitting during feature 
extraction. The feature 2 was detected twice within a narrow mass and time interval 
(Table 12). 

The third peptide 
pointed in Figure 22 A 
has an ion score of 
45.6 and a good 
quality matching for 
spectrum shown in 
Figure 23 B. All most 
intense ions are 
assigned to the 
respective peptide 
fragments. However, 

despite the good quality of MS/MS spectra this peptide has the most conflicting ratio 
(Figure 22 A). The reason is probably related to SuperHirn feature extraction. On one 
hand the feature is extracted twice at relatively large mass-to-charge interval (5.6 
ppm) and therefore could be due to low threshold on peak clustering during 
extraction (FTMZT, Test 37, Table 16). On the other hand the examination of raw 
data showed that the chromatographic elution profile is not of good quality. Thus it is 
possible that the extraction was hindered by poor quality of chromatogram.  

D. Thresholds to infer differential expression  
As discussed in section II.D.2, in context of blind experiment the differential 
expression is inferred from the available evidence. First, the magnitude of fold change 
can be used to distinguish the features that are likely to be differentially expressed, 
the higher the magnitude, the higher the likelihood of differential expression. As 
illustrated in Figure 24 (figures C and D), applying fold change cut-off bigger or equal 
to 1.5 to ratios between samples 2 and 1 of test data set allows distinguishing almost 
all of the truly differentially expressed features quantified by either SpecArray or 
SuperHirn. However using only fold change cut-off results in high number of false 
positive results, which could possibly be due to other sources of variation, provided 
that the identifications were assigned correctly. Since only the identified features 
were included in Figure 24, the false positive results may belong to a spiked peptide 
only in the case of wrong assignment of MS/MS identification.   

Another possibility to infer differential expression is through statistical analysis that 
supplements the fold change with the measure of data dispersion. Due to the reasons 
discussed in section II.D, a standard two-sided t-test was used to determine p-values. 
Setting a 0.01 p-value threshold allows detecting sufficient amount of truly 
differentiated features with lower number of false positive detections (Figure 24, A and 
B). The number of true positives is relatively equivalent in case of both types of 
thresholds, whereas the number of false positives is reduced significantly if p-value 
cut-off is applied.  

Standard t-test does not take into account the magnitude of the fold-change. Thus, as 
illustrated in Figure 24 A and B, Ecoli peptides that have relatively small change in 
expression level are assigned low p-values. Any feature that has low dispersion within 
each of the samples will be assigned low p-value regardless of the magnitude of its 
fold change (Figure 25, A). Conversely, a feature with high dispersion in intensity 
values within each of the samples may be assigned a high p-value even if the fold 
change ratio is high (Figure 25, B).  

m/z Rt z Sequence Probabilty count 

501.7963 33.06 2 K.LVVSTQTALA 100% 11 

740.4019 44.5 2 K.LGEYGFQNALIVR 100% 3 

740.4042 44.97 2 K.LGEYGFQNALIVR 100% 10 

978.4854 46.61 2 K.DAIPENLPPLTADFAEDK 100% 6 

978.4909 45.22 2 K.DAIPENLPPLTADFAEDK 100% 3 

Table 12: Three peptides assigned to albumin with 
comflicting ratios (Figure 22 A) 
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A small scale fluctuation is in general more characteristic to biologically insignificant 
variation. A possible way to exclude the features with high p-values, but small fold-
change is to apply a combined threshold. Thus only features with both low enough p-
values and high enough fold-change ratio will be assigned 
significance in terms of differential expression. The problem of 
using the combined threshold is related to the determination 
of the fold-change threshold value. Depending on the sample 
the changes in expression level may be indeed of rather small 
scale. Thus failing to set a fold change threshold on low 
enough level may exclude truly differentially expressed 
features.  

Another way to exclude the features with small fold-change is 
through the use of modified t-test. Limma t-statistics 
developed for microarray data considers the whole set of 
available fold change ratios to determine the lowest possible 
fold-change limit (section II.D.2.b). The features that have 
low dispersion but do not yield a high enough fold change 
ratio will be assigned higher p-values.  

  

  

log2(ratio) log2(ratio) 

log2(ratio) log2(ratio) 

A B 

C D 

Figure 24: Ratios of peptides between two test samples assigned differential 
expression by applying a threshold on t-test p-value of SpecArray (A) and SuperHirn 
(B) results and by applying a fold change cutoff on SpecArray (C) and Superhirn (D) 
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E. Grouping peptides to proteins  
In order to deal with the cases of multiple peptide identification assignments, the 
peptide was attributed to the first identification in the list. Unfortunately, such 
simplistic approach cannot solve the problem of peptide grouping to proteins. On one 
side the order of multiple identifications listed in Mascot dat files reflects the likelihood 
of occurrence. Thus if peptide is shared between two proteins out of which one has a 
number of unique peptides and the other one has only shared peptides, the peptides 
will be assigned to the first protein. In this case indeed it is more likely that the first 
protein is present, although this does not mean that the second protein is absent. 
Bigger problem arises when two or more proteins have all shared peptides and 
represent thus equivalent identification possibilities. In this case the order in which 
possible identifications are listed does not represent any likelihood.  

To provide for more elaborate procedure to deal with grouping issue, a mechanism of 
pattern examination could be developed to deduce the peptides that are likely to 
belong to other proteins than the ones they have been assigned to. Thus for example 
in cases when protein has some unique peptides and is assigned some of the shared 
peptides the patterns of fold change could be examined and strongly conflicting 
patterns could be excluded. In addition the examination of expression patterns for 
peptides shared among numerous proteins could in some cases provide an insight on 
the most probable number of proteins that could be present, by clustering the 
available patterns.  
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VII. Conclusions  
The developed pipeline includes two quantification programs: SpecArray and 
SuperHirn and is readily extensible to include more programs. The pipeline provides 
means to evaluate the performance of the integrated software based on the data set 
with proteins at known concentrations. The software performance can be assessed in 
terms of capacity to distinguish the truly differentiated and undifferentiated peptides 
as well as in terms of trueness and precision of results. Critical performance 
parameters can be mapped and their influence can be investigated. In addition to 
software evaluation, the pipeline can be used to compare and combine the features 
extracted by different programs. The pipeline includes a number of statistical tools to 
analyse differential expression. All the aforementioned analyses do not require 
extensive informatics skills from a user, although provide for extended analysis 
options for experienced users.  

Pipeline validation included the parameterisation analysis that allowed discerning the 
optimal parameter settings for both integrated software packages on LTQ-Orbitrap 
platform. The selected settings yield a better performance in terms of both ROC-
based as well as trueness and precision measures. As expected the most critical 
SpecArray parameters are those that are involved in spectra pre-processing. The 
default thresholds, optimised for lower resolution data, induce a loss of feature signals 
when applied to higher resolution data. Thus a four-fold reduction of these 
parameters alone increases the number of extracted features. An additional increase 
seems to be attributable to a reduction of mass-to-charge threshold that is used to 
discard the overlapping features during the extraction. Other parameters are related 
to probability based retention time alignment and their influence is less clear. The 
most influential tested SuperHirn parameter is the threshold on intensity of the signal. 
Raising this threshold to 100,000 improves the analysis of data generated with 
Orbitrap.  

The major benefit of the developed pipeline is the possibility to assess the limits and 
the benefits of different quantification software packages. Thus parameterised 
SpecArray quantifies features with rather small dispersion; most of resulting features 
remain on the same level of expression. However this advantage of SpecArray is 
associated with the limited number of quantified features in comparison to SuperHirn. 
A possible reason behind this could be related to hard-coded signal intensity cut-offs 
applied by SpecArray in spectra pre-processing. SuperHirn retrieves about five times 
more features present in all replicates of at least one sample than SpecArray, 
including low abundance features. However most of resulting abundance measures 
seem to be rather dispersed. In addition, the quality of final results is decreased by 
redundancy of feature extraction and intensity signal splitting. Although even with 
optimal SuperHirn settings the redundancy of extraction remains a problem, it seems 
that increasing the inter scan distance parameter value can alleviate this problem. 
SuperHirn contains numerous parameters available for fine tuning, thus further 
performance assessment can include more parameters in parameterisation analysis.  

The pipeline was validated with biological data set that confirmed the limitations and 
advantages of programs determined during the parameterisation. The biological data 
results have also highlighted the problem of peptide grouping, which is particularly 
significant in case of heat shock proteins with high sequence similarities.  

The further analysis of SpecArray and SuperHirn as well pipeline development would 
benefit from additional test data set that could include more spiked proteins. One 
possibility is to use simulated data, for example by generating it with LC-mSsim 
(Schulz-Trieglaff). The existing test data and additional data could be used to develop 
an approach to deal with missing values. Moreover, the effect of different statistical 
approaches included in pipeline on the quality of final results could be investigated 
and current set of available approaches can further be extended. A number of 
microarray statistical tools could be integrated, for example Limma package that 
calculates modified t-statistics taking into account the whole data set and thus 
avoiding the assignment of low p-values to features that have too small fold change 
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ratio. Furthermore currently implemented t-test can be supplemented with an 
appropriate approach to deal with multiple testing problem discussed in section 
II.D.3.  
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IX. Appendix 

A. Test data set quality control 

 

 

 

Figure 26: 
Dendrogram of all 
test data set 

features extracted 
with SpecArray 
using default 
parameters, test 1 
(Table 15) 

Since undifferentiated 
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are observed 
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Figure 27: 
Dendrogram of 

spiked proteins from 
test data set 
extracted with 
SpecArray using 
default parameters, 
test 1 (Table 15) 

Distance, log2(Intensity) 
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Figure 29: 
Dendrogram of 
spiked proteins 
from test data set 

extracted with 
SuperHirn using 
default parameters, 
test 10 (Table 16) 

 

Figure 28: 
Dendrogram of all 
test data set 
features extracted 
with SuperHirn 

using default 
parameters, test 
10 (Table 16) 
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B. Validation of accuracy ranking 
 

 

 
 absolute 

mean 
deviation 

mean 
trueness 

median 
trueness 

CV 
Total 
score 

Test T.P 13.83 4.39 4.34 4.68 27.24 

Test TnP 7.8 4.06 4.34 0 16.2 

Test nT.P 0 0 0 4.68 4.68 

Test nTnP 0 0.06 0 0 0.06 

T=true, P=precise, nT=not true, nP=not precise 

Table 14: Test data accuracy scores 

Test Theoretical value=2 Theoretical value=3 Theoretical value=4 

Test1: T.P 2.01, 2.05, 1.95, 1.99 3.01, 3.05, 2.95, 2.99 4.01, 4.05, 3.95, 3.99 

Test2: TnP 1.4, 2.6, 1.2, 2.8 2.4, 3.6, 2.2, 3.8 3.4, 4.6, 3.2, 4.8 

Test3: nT.P 4.01, 4.05, 3.95, 3.99 5.01, 5.05, 4.95, 4.99 6.01, 6.05, 5.95, 5.99 

Test4: nTnP 3.4, 4.6, 3.2, 4.8 4.4, 5.6, 4.2, 5.8 5.4, 6.6, 5.2, 6.8 

T=true, P=precise, nT=not true, nP=not precise 

Table 13: Data sets used for accuracy ranking validation 
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C. SpecArray parameter tuning 
 
 11 2 3 4 5 6 7 8 9 10 
VAL_DMZ_PP 0.02 0.01 0.005 0.02 0.02 0.01 0.005 0.02 0.02 0.01 
VAL_DELMZ_PP 0.1 0.1 0.1 0.05 0.025 0.05 0.025 0.1 0.1 0.05 

VAL_DMZ_FE 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
VAL_SNR_FE 5 5 5 5 5 5 5 5 5 5 

VAL_MXMZ_AL 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.02 0.02 0.02 
VAL_MNMZ_AL 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.05 
           
           

  11 12 13 14 15 16 17 18 192 20 
VAL_DMZ_PP 0.01 0.005 0.005 0.005 0.01 0.005 0.005 0.005 0.005 0.005 
VAL_DELMZ_PP 0.05 0.025 0.025 0.025 0.05 0.025 0.025 0.025 0.025 0.025 

VAL_DMZ_FE 0.05 0.05 0.01 0.05 0.05 0.05 0.05 0.05 0.01 0.05 
VAL_SNR_FE 5 5 2 2 5 5 5 2 2 5 
VAL_MXMZ_AL 0.02 0.02 0.02 0.02 0.1 0.1 0.2 0.02 0.02 0.02 

VAL_MNMZ_AL 0.01 0.01 0.05 0.01 0.05 0.05 0.05 0.05 0.01 0.05 

           
           
 21 22 23 24 25 26 27 28 29  

VAL_DMZ_PP 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005  
VAL_DELMZ_PP 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025  
VAL_DMZ_FE 0.01 0.01 0.05 0.01 0.05 0.05 0.01 0.05 0.01  

VAL_SNR_FE 5 2 2 2 2 2 2 2 2  
VAL_MXMZ_AL 0.02 0.01 0.01 0.005 0.005 0.01 0.01 0.005 0.005  

VAL_MNMZ_AL 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01  

Table 15: SpecArray parameter testing 

 

See section C. Parameter tuning 

                                           
1 Default parameters 
2 Selected optimal settings 
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D. SuperHirn parameter tuning 

See section C. Parameter tuning 

 

 

                                           
1 Default parameters 
2 Produced errors in feature extraction 
3 Selected optimal settings 

  11 2 3 4 5 6 7 8 9 

RTT 0.5 0.5 1 0.5 0.5 1 1 0.5 0.5 

RTW 5 5 5 5 10 10 5 5 5 

FTMZT 0.01 0.01 0.01 0.005 0.01 0.01 0.005 0.01 0.01 

FTIT 1 1 1 1 1 1 1 10 100 

MISD 5 10 5 5 5 5 5 5 5 

          

          

          

  10 11 12 13 14 152 16 17 182 

RTT 0.5 0.5 0.5 1 1 0.5 1 1 1 

RTW 5 5 5 10 10 5 5 5 5 

FTMZT 0.01 0.01 0.01 0.005 0.005 0.01 0.01 0.01 0.01 

FTIT   1,000    10,000    100,000 1,000 100,000 1,000,000 10,000 100,000 1,000,000 

MISD 5 5 5 5 5 5 5 5 5 

          

          

          

          

 19 20 212 22 23 242 25 26 272 

RTT 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

RTW 10 10 10 5 5 5 5 5 5 

FTMZT 0.01 0.01 0.01 0.005 0.005 0.005 0.01 0.01 0.01 

FTIT 10,000 100,000 1,000,000 10,000 100,000 1,000,000 10,000 100,000 1,000,000  

MISD 5 5 5 5 5 5 10 10 10 

          

          

          

  28 29 302 31 32 332 373   

RTT 1 1 1 1 1 1 0.5   

RTW 5 5 5 5 5 5 5   

FTMZT 0.005 0.005 0.005 0.01 0.01 0.01 0.005   

FTIT 10,000  100,000  1,000,000   10,000 100,000  1,000,000  100,000    

MISD 5 5 5 10 10 10 10   

Table 16: SuperHirn parameter testing 

 


